Economic Botany

, Volume 57, Issue 1, pp 118–125 | Cite as

Inhibition ofStreptococcus mutans and Other Oral streptococci by hop (Humulus lupulus L.) constituents

  • Sanchita Bhattacharya
  • Salima Virani
  • Mashenka Zavro
  • Gerhard J. Haas
Research

Abstract

We report the inhibition of the causative agents of dental caries, Streptococcus mutans and other oral streptococci, by the antimicrobially active ingredients of the hop plant (Humulus lupulus L.). The hop constituents studied were purified beta acid, xanthohumol, isoalpha acid and tetra iso-alpha acid. Cruder hop extracts were also investigated. The antimicrobial activity of these hop constituents was tested against four strainsof Streptococcus mutans as well as one strain each ofStreptococcus sanguis andStreptococcus salivarius and compared to antimicrobial essential oils used in mouthwashes in two independent assay systems. We found that all tested hop constituents inhibited the Streptococci. The minimum inhibitory concentration at pH 7.5 ranged from 2 to 50 μg/ml depending on the microorganism and hop phytochemical tested. Contrary to a previous report, there was no activity enhancement by ascorbic acid over and above the enhancement due to pH lowering. Thére was no resistance development to beta acid after 10 passages in a subinhibitory concentration of this acid. Antimicrobial activity of hop constituents was found to be greater than other plant products such as thymol, nerol, cinnamon oil, oil of clove, menthol and eucalyptol. The possibilities of using hop constituents in mouthwashes are discussed.

Key Words

antimicrobial ascorbate beta acid dental caries disc diffusion assay humulone iso-alpha acid lupulone MIC mouthwash thymol xanthohumol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Almas, K. 1999. The antimicrobial effects of extracts ofAzadirachta indica (Neem) andSalvadora persica (Arak) chewing sticks. Indian Journal of Dental Research 10(1):23–26.PubMedGoogle Scholar
  2. Anderson, A. A., and H. D. Michner. 1949. Protection of lupulone and humulone by ascorbic acid. Science 110: 68–69.CrossRefGoogle Scholar
  3. Barney, M. C., E. J. Kot, E. Chicoye, and J. K Jilek. 1994. Oral care composition containing hop acids and method. United States Patent 5, 370, 863.Google Scholar
  4. Cai, L., and C. D. Wu. 1996. Compounds fromSyzgium aromaticum possessing growth inhibitory activity against oral pathogens. Journal of Natural Products 59(10):987–990.PubMedCrossRefGoogle Scholar
  5. Carson, C. F., K. A. Hammer, and T. V. Riley. 1995. Broth microdilution method for determining the susceptibility ofEscherichia coli andStaphylococcus aureus to the essential oils ofMelaleuca alternifolia (tea tree oil). Microbios 82:181–185.PubMedGoogle Scholar
  6. Chen, C. P., C. C. Lin, and T. Namba.1989. Screening of Taiwanese crude drugs for antibacterial activity againstStreptococcus mutans.Journal of Ethnopharmacology 27(3):285–295.PubMedCrossRefGoogle Scholar
  7. Craig, A. 1998. Antimicrobial resistance-danger signs all around. Tennessee Medicine 91(11):433–435.PubMedGoogle Scholar
  8. Didry, N., L. Dubreuil, and M. Pinkas. 1994. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharmaceutica Acta Helvetica 69:25–28.CrossRefGoogle Scholar
  9. Fine, D. H., D. Furgang, M. L. Barnett, C. Drew, L. Steinberg, C. H. Charles, and J. W. Vincent. 2000. Effect of and essential oil-containing antiseptic mouthrinse on plaque and salivaryStreptococcus mutans levels. Journal of Clinical Periodontology 27:157–167.PubMedCrossRefGoogle Scholar
  10. Gouin, F. 1958. Die Hopfenbitterstoffe als Antibiotika. Brauwissenschaft 11:230–231.Google Scholar
  11. Haas, G. J. 1976. Oral preparations for reducing the incidence of dental caries. United States Patent 3, 932, 603.Google Scholar
  12. —,and R. Barsumian. 1994. Antimicrobial activity of hop resins. Journal of Food Protection 57(1):59–61.Google Scholar
  13. Hamada, S., and H. D. Slade. 1980. Biology, immunology and carcinogenicity ofStreptococcus mutans. Microbiological Review 44:331–384.Google Scholar
  14. Hanada, N. 2000. Current understanding of the cause of dental caries. Japanese Journal of Infectious Disease 53(1):1–5.Google Scholar
  15. Hassell, T. M., and E. L. Harris. 1995. Genetic influences in caries and periodontal diseases. Critical Review of Oral Biology and Medicine 6(4):319–342.CrossRefGoogle Scholar
  16. Hough, J. S., and G. A. Howard. 1957. Bacteriostatic activities of hop resin materials. Brewing Industry Research Foundation 63:331–332.Google Scholar
  17. Jagtap, A. G., and S. G. Karkera. 2000. Extract ofJuglandaceae regia inhibits growth,in vitro adherence, acid production and aggregation ofStreptococcus mutans. Journal of Pharmaceticals and Pharmocology 52(2):235–242.Google Scholar
  18. —,and—. 1999. Potential of the aqueous extract ofTerminalia chebula as an anticaries agent. Journal of Ethnopharmocology 68(1-3): 299–306.CrossRefGoogle Scholar
  19. Jarvinen, H., J. Tenevou, and P. Huovinen. 1993. Susceptibility ofStreptoccous mutans to chlorhexidine and six other antimicrobial agents. Antimicrobial Agents and Chemotherapy 37:1158–1159.PubMedGoogle Scholar
  20. Koo, H., B. P. Gomes, P. L. Rosalen, G. M. Ambrosano, Y. K. Park, and J. A. Cury. 2000.In vitro antimicrobial activity of propolis andArnica montana against oral pathogens. Archives of Oral Biology 45(2): 141–8.PubMedCrossRefGoogle Scholar
  21. Kubo, I. 1992. Tea fights cavities. 133rd Meeting of the American Chemical Society. San Francisco, CA, USA.Google Scholar
  22. —,M. Himejima, and H. Muroi. 1992. Antimicrobial activity of green flavor tea compounds and their combination effects. Journal Agricultural Food Chemistry 40:245–248.CrossRefGoogle Scholar
  23. Kurby, W. W. W. M., J. C. Sherris, and M. Iurck. 1966. Antibiotic susceptibility testing by a standardized single disc assay method. American Journal of Clinical Pathology 45:493–496.Google Scholar
  24. Losche, W. J. 1985. Role ofStreptococcus mutans in human dental decay. Microbiological Review 50: 245–248.Google Scholar
  25. Matsumoto, M., T. Minami, H. Sasaki, S. Sobue, S. Hamada, and T. Ooshima. 1999. Inhibitory effects of oolong tea extract on caries-inducing properties ofmutans streptococci. Caries Research 33(6):441–446.PubMedCrossRefGoogle Scholar
  26. Morgan, T. D., A. E. Beezer, J. C. Mitchell, and A. W. Bunch. 2001. A microcalorimetric comparison of the anti-Streptococcus mutans efficacy of plant exteracts and antimicrobial agents in oral hygiene formulations. Journal of Applied Microbiology 90(1):53–58.PubMedCrossRefGoogle Scholar
  27. Murio, H., and I. Kubo. 1993. Combination effects of antimicrobial compounds in green tea flavor againstStreptococcus mutans. Journal Agricultural Food Chemistry 41:1102–1105.CrossRefGoogle Scholar
  28. Ooshima, T., Y. Osaka, H. Sasaki, K. Osawa, H. Yasuda, and M. Matsumoto. 2000. Cariostatic activity of cacao mass extract. Archives of Oral Biology 45(9):805–808.PubMedCrossRefGoogle Scholar
  29. Pader, M. 1987. Oral hygiene products and practice. Marcel Dekker, Inc., New York. p. 48–49.Google Scholar
  30. Park, Y. K., M. H. Koo, J. A. Abreu, M. Ikegaki, J. A. Curry, and P. L. Rosalen. 1998. Antimicrobial activity of propolis on oral microorganisms. Current Microbiology 36(1):24–28.PubMedCrossRefGoogle Scholar
  31. Sato, M., S. Fujiwara, H. Tsuchiya, T. Fujii, M. Iinuma, H. Tosa, Y. Ohkawa. 1996. Flavones with antibacterial activity against cariogenic bacteria. Journal of Ethnopharmacology 54(2-3):171–176.PubMedCrossRefGoogle Scholar
  32. Schmalreck, A. F., M. Teuber, W. Reininger, and A. Hartl. 1975. Structural features determining antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Canadian Journal of Microbiology 21:205–212.PubMedCrossRefGoogle Scholar
  33. Shouji, N., K. Takada, K. Fukushima, and M. Hirasawa. 2000. Anticaries effect of a component from shiitake (an edible mushroom). Caries Research 34(1):94–98.PubMedCrossRefGoogle Scholar
  34. Simpson, W. J. 1993. Ionophoric action of trans-isohumulone onLactobacillus brevis. The Journal of General Microbiology 139:1041–1045.Google Scholar
  35. —,and A. R. W. Smith. 1992. Factors affecting antimicrobial activity of hop compounds and their derivatives. The Journal of Applied Bacteriology 72(4):327–334.PubMedGoogle Scholar
  36. Stevens, J. F., M. Ivancic, V. L. Hsu, and M. L. Deinzer. 1997. Preflavanoids fromHumulus lupulus. Phytochemistry 44(8): 1575–1585.CrossRefGoogle Scholar
  37. Stevens, R. 1987. The chemistry of hop constituents. An introduction Brewing Science and Technology. The Institute of Brewing London, England. Series II. 1:23–24.Google Scholar
  38. Taiwo, O., H. X. Xu, and S. F. Lee. 1999. Antibacterial activity of extracts from Nigerian chewing sticks. Phytotherapy Research 13(8):675–679.PubMedCrossRefGoogle Scholar
  39. Teuber, M. 1970. Low antibiotic potency of isohumulone. Applied Microbiology 19:871.PubMedGoogle Scholar
  40. Wongkham, S., P. Laupattarakasaem, K. Pienthaweechai, P. Areejitanusorn, C. Wongkham, and T. Techanitiswad. 2001. Antimicrobial activity ofStreblus asper leaf extract. Phytotherapy Research 15(2):119–121.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden Press 2003

Authors and Affiliations

  • Sanchita Bhattacharya
    • 1
  • Salima Virani
    • 1
  • Mashenka Zavro
    • 1
  • Gerhard J. Haas
    • 1
  1. 1.School of Natural SciencesFairleigh Dickinson UniversityTeaneck

Personalised recommendations