Economic Botany

, Volume 56, Issue 2, pp 154–164 | Cite as

Using amplified fragment length polymorphisms (AFLP) to identify Black Cohosh (Actaea racemosa)

  • Nyree J. C. Zerega
  • Scott Mori
  • Charlotte Lindqvist
  • Qunyi Zheng
  • Timothy J. Motley
Research

Abstract

The rhizome ofActaea racemosa L., commonly called black cohosh, is a popular botanical dietary supplement used to treat female health concerns. The rhizomes used in black cohosh products are often collected from the wild. To ensure quality control, it is imperative that plants be correctly identified. This paper examines the use of the DNA fingerprinting technique, AFLP, as an analytical means of identifyingA. racemosa from three other closely related sympatric species. To this end, 262 AFLP markers were generated, and one unique fingerprint was identified forA. racemosa, whereas two, six, and eight unique fingerprints were identified for the closely related speciesA. pachypoda, A. cordifolia, andA. podocarpa, respectively. Two commercial black cohosh products were also subjected to AFLP analysis and shown to contain onlyA. racemosa. The results of this study suggest that AFLP analysis may offer a useful method for quality control in the botanical dietary supplements industry.

Key Words

AFLP black cohosh Actaea racemosa DNA fingerprinting botanical dietary supplements Ranunculaceae Cimicifuga racemosa 

Die verwendung von AFLP-Mustern zur Identifikation von Black Cohosh (Actaea racemosa)

Resumen

Das Rhizom vonActaea racemosa L., allgemein als ‘black cohosh’ bezeichnet, ist eine beliebte pflanzliche Diätsergänzung, die für weibliche Gesundheitsprobleme benützt wird. Oft sind die in ‘black cohosh’-Produkten verwendeten Rhizome in freier Natur gesammelt. Um Qualitätskontrolle zu sichern, ist es zwingend, die Pflanzen richtig zu identifizieren. Diese Studie überprüft den Gebrauch der DNA-Fingerabdrucktechnik, AFLP, als analytisches Mittel der Identifizierung, umA. racemosa von drei anderen in ihrer Nähe beheimateten und nah verwandten Spezies zuunterscheiden. Zu diesem Zweck wurden 262 AFLP-Fingerabdrücke erzeugt. Für A. racemosa wurde ein einzigartiger Fingerabdruck identifiziert, während für die nah verwandten Spezies A. pachypoda zwei, A. cordifolia sechs, und A. podocarpa acht einzigartige Fingerabdrücke gefunden wurden. Zwei kommerzielle ‘black cohosh’ -Produkte wurden ebenfalls der AFLP-Analyse unterzogen, wobei nur A. racemosa nachgewiesen werden konnte. Die Resultate dieser Studie zeigen, daβ die AFLP-Technik eine nützliche Methode für die Qualitdtskontrolle in der pflanzlichen Diätsergänzungsindustrie bieten kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Backeljau, T., L. De Bruyn, H. De Wolf, K. Jordaens, S. Van Dongen, R. Verhagen, and B. Winnepenninckx. 1995. Random amplified polymorphic DNA (RAPD) and parsimony methods. Cladistics 11:119–130.CrossRefGoogle Scholar
  2. Cardoso, S. R. S., N. B. Eloy, J. Provan, M. A. Cardoso, and P. D. G. Ferreira. 2000. Genetic differentiation ofEuterpe edulis Mart, populations estimated by AFLP analysis. Molecular Ecology 9: 1753–1760.PubMedCrossRefGoogle Scholar
  3. Cervera, M. T., J. A. Cabezas, J. C. Sancha, F. Martinez de Toda, and J. M. Martinez-Apater. 1998. Application of AFLPs to the characterization of grapevineVitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theoretical and Applied Genetics 97:51–59.CrossRefGoogle Scholar
  4. Compton, J. A., A. Culham, and S. L. Jury. 1998. Reclassification ofActaea to includeCimicifuga andSouliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL- F sequence variation. Taxon 47:593–634.CrossRefGoogle Scholar
  5. Escaravage, N., S. Questiau, A. Pornon, B. Doche, and P. Taberlet. 1998. Clonal diversity in aRhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Molecular Ecology 7:975–982.CrossRefGoogle Scholar
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Foster, S. 1999. Black cohosh:Cimicfuga racemosa, a literature review. Herbalgram 45:35–49.Google Scholar
  8. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20:406–416.CrossRefGoogle Scholar
  9. Hamel, P. B., and M. U. Chiltoskey. 1975. Page 30in Cherokee plants and their uses: a 400 year history. Herald Publishing, North Carolina.Google Scholar
  10. He, K., B. Zheng, C. H. Kim, L. Rogers, and Q. Zheng. 2000. Direct analysis and identification of triterpene glycosides by LC/MS in black cohosh,Cimicifuga racemosa, and in several commercially available black cohosh products. Planta Medica 66:1–6.CrossRefGoogle Scholar
  11. Hill, M., H. Witsenboer, M. Zabeau, P. Vos, R. Kesseli, and R. Michelmore. 1996. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships inLactuca spp. Theoretical and Applied Genetics 93:1202–1210.CrossRefGoogle Scholar
  12. Howard, H. 1836. Pages 173–175, 268in An improved system of botanical medicine, 3rd ed. Columbus, OH.Google Scholar
  13. Jones, C. J., K. J. Edwards, S. Castiglione, M. O. Winflels, F. Sala, C. Van der Wiel, B. L. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, N. Marmiroli, R. L. Aert, G. Volckaert, J. Rueda, A. Vazques, and A. Karp. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Pages 191–192in A. Karp, P. G. Isaac, and D. S. Ingram, eds., Molecular tools for screening biodiversity. Chapman and Hall, London.Google Scholar
  14. Kardolus, J. P., H. J. van Eck, and R. G. van den Berg. 1998. The potential of AFLPs in biosystematics: a first application inSolanum taxonomy (Solanaceae). Plant Systematics Evolution 210:87–103.CrossRefGoogle Scholar
  15. Krauss, S. L. 1999. Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Molecular Ecology 8:217–226.CrossRefGoogle Scholar
  16. Linnaeus, C. 1753. Species Plantarum. Stockholm.Google Scholar
  17. Loh, J. P., R. Kiew, A. Kee, L. H. Gan, and Y. Gan. 1999 AFLP provides molecular markers for the identification ofCaladium bicolor cultivars. Annals of Botany 84:155–161.CrossRefGoogle Scholar
  18. Milbourne, D. R., R. Meyer, J. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell, and R. Waugh. 1997. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivate potato. Molecular Breeding 3:127–136.CrossRefGoogle Scholar
  19. Mooney, J., and F. M. Olbrechts. 1932. The Swimmer manuscript: Cherokee sacred formulas and medicinal prescriptions. Washington, DC: Smithsonian Institution Bureau of American Ethnology, Bulletin 99:277.Google Scholar
  20. Nuttall, T. 1818. The genera of North American plants, 2. Philadelphia.Google Scholar
  21. Paran I.,E. Aftergoot, and C. Shifriss. 1998. Variation inCapsicum annuum revealed by RAPD and AFLP markers. Euphytica 99:167–173.CrossRefGoogle Scholar
  22. Porcher, F. 1849. Report on the indigenous medicinal plants of South Carolina. The Transactions of the American Medical Association 2:686–687.Google Scholar
  23. Qamaruz-Zaman, F., M. F. Fay, J. S. Parker, and M. W. Chase. 1998. The use of AFLP fingerprinting in conservation genetics: a case study ofOrhis simia (Orchidaceae). Lindleyana 13 (2): 125–133.Google Scholar
  24. SAS Institute. 2000. JMP(r) statistical discovery software. SAS Institute, Cary, NC, USA.Google Scholar
  25. Speck, F. G. 1917. Medical practice of the Northeastern Algonquians. Proceedings of the 19th International Congress of Americanists: 310–311.Google Scholar
  26. Struwe, L., M. Thiv, J. W. Kadereit, A. S. R. Pepper, T. J. Motley, P. J. White, J. H. E. Rova, K. Potgieter, and V. A. Albert. 1998.Saccifolium (Saccifoliaceae), an endemic of Sierra de la Neblina on the Brazilian-Venezuelan border, is related to a temperate-alpine lineage of Gentianaceae. Harvard Papers in Botany 3 (2):199–214.Google Scholar
  27. Swofford, D. 1998. PAUP*: Phylogenetic analysis using parsimony, version 4.01bl. Laboratory of Molecular Systematics, Smithsonian Institution, Washington, DC, and Sinauer, Sunderland, MA, USA.Google Scholar
  28. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Homes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23 (21):4407–4414.PubMedCrossRefGoogle Scholar
  29. Yamamoto, T., T. Shimada, K. Kotobuki, Y. Morimoto, and M. Yoshida. 1998. Genetic characterization of Asian chestnut varieties assessed by AFLP. Breeding Science 48:359–363.Google Scholar

Copyright information

© The New York Botanical Garden Press 2002

Authors and Affiliations

  • Nyree J. C. Zerega
    • 1
  • Scott Mori
    • 1
  • Charlotte Lindqvist
    • 2
  • Qunyi Zheng
    • 3
  • Timothy J. Motley
    • 1
  1. 1.New York Botanical GardenBronxUSA
  2. 2.Norwegian Forest Research InstituteNorway
  3. 3.Pure World Botanicals, Inc.South HackensackUSA

Personalised recommendations