Skip to main content
Log in

Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae

  • Systematics
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

Amorpheae (Fabaceae: Papilionoideae) was first considered a natural group by Rupert Barneby in his illustrated monographDaleae Imagines. Amorpheae currently comprise eight genera, ca. 250 spp., and extensive floral diversity, including loss of corolla and addition of a stemonozone. The Amorpheae and many of Barneby’s subtribal groups are supported as monophyletic by previous phylogenetic analysis of nuclear ribosomal and chloroplast sequence data. However, some relationships remain unclear. A nuclear marker derived from a genomic study inMedicago CNGC 4, was sequenced in selected Amorpheae This is one of the first applications of this marker. for phylogenetic study. The new data confirm some relationships inferred usingtrnK and ITS, but also provide evidence for new arrangements. Combined data were used to explore several aspects of Barneby’s taxonomic framework. The phylogeny, in concert, with data on floral morphology, implies that simplification of the complex papilionoid flower has occurred several times in the history of the Amorpheae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Álvarez, I. &J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, C. D., T. G. Carr, S. A. Harris &C. E. Hughes. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29: 435–455.

    Article  PubMed  CAS  Google Scholar 

  • —,C. E. Hughes &S. A. Harris. 2004. Using RAPDs to identify DNA sequence loci for species level phylogeny reconstruction: an example fromLeucaena (Fabaceae). Systematic Botany 29: 4–14.

    Article  Google Scholar 

  • Barker, F. K. &F. M. Lutzoni. 2002. The utility of the incongruence length difference test. Systematic Biology 51: 625–637.

    Article  PubMed  Google Scholar 

  • Barneby, R. C. 1962 A synopsis ofErrazurizia. Leaflets of Western Botany 9: 209–214.

    Google Scholar 

  • — 1977. Daleae imagines: an illustrated revision ofErrazurizia Philippi,Psorothamnus Rydberg,Marina Liebmann, andDalea Lucanus emend. Barneby, including all species of Leguminosae tribe Amorpheae Borissova ever referred toDalea. Memoris of The New York Botanical Garden 27: 1–891.

    Google Scholar 

  • — 1980. Three new species ofDalea sect.Parosela (Leguminosae: Amorpheae) from western and southern Mexico. Brittonia 32: 392–396.

    Article  Google Scholar 

  • —, 1981. New species ofDalea sectionParosela (Leguminosae: Amorpheae) from Peru and Mexico. Brittonia 33: 508–511.

    Article  Google Scholar 

  • — 1988. The genusDalea (Fabaceae tribe Amorpheae) in Departmento de Cajamarca, Peru, with description of three new species. Brittonia 40: 1–6.

    Article  Google Scholar 

  • — 1990. Two new taxa inDalea (Fabaceae: Amorpheae) from southern Mexico and northern Chile. Brittonia 42: 89–91.

    Article  Google Scholar 

  • Bentham, G. 1865. Leguminosae. Pages 434–600.In: G. Bentham & J. D. Hooker, editors. Genera plantarum, Lovell Reeve & Co., London, UK.

    Google Scholar 

  • Choi, H. K., D. Kim, T. Uhm, E. Limpens, H. Lim, J.-H. Mun, P. Kalo, R. V. Penmetsa, A. Seres, O. Kulikova, B. A. Roe, T. Bisseling, G. B. Kiss &D. R. Cook. 2004a. A sequence-based genetic map ofMedicago truncatula and comparison of marker colinearity withM. sativa. Gentics 166: 1463–1502.

    Article  CAS  Google Scholar 

  • —. 2004b. Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Science 43: 15289–15294.

    Article  CAS  Google Scholar 

  • Corby, H. D. L., 1981. The systematic value of leguminous root nodules. Pages. 657–670.In: R. M. Polhili & P. H. Raven, editors. Advances in legume systematics. Part 2. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • Crase, D. 2004. Both: a portrait in two parts. Pantheon Books, New York, USA.

    Google Scholar 

  • Doyle, J. J. &J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

    Google Scholar 

  • Driskell, A. C., C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O’Meara &M. J. Sanderson. 2004. Prospects for building the tree of life from large sequence databases. Science 306: 1172–1174.

    Article  PubMed  CAS  Google Scholar 

  • Endress, P. K., 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press. Cambridge, UK.

    Google Scholar 

  • Estrada-C, A. E., J. A. Villarreal-Q. &M. González-E. 2004. A new species ofDalea sect.Parosela (Fabaceae: Amorpheae) from Mexico, Brittonia 56: 67–71.

    Article  Google Scholar 

  • Farris, J. S., M. Källersjö, A. G. Kluge &C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38: 783–791.

    Article  Google Scholar 

  • Ferguson, I. K. 1990. The significance of some pollen morphological characters of the tribe Amorpheae and of the genusMucuna (tribe Phaseoleae) in the biology and systematics of subfamily Papilionoideae (Leguminosae). Review of Palaeobotany and Palynology 64: 129–36.

    Article  Google Scholar 

  • — &J. J. Skvarla. 1981. The pollen morphology of the subfamily Papilionoideae (Leguminosae). Pages 859–896.In: R. M. Polhill & P. H. Raven, editors. Advances in legume systematics. Part 2. Royal Botanic Gardens Kew, UK.

    Google Scholar 

  • Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47: 90–17.

    Article  Google Scholar 

  • Guinet, P. & I. K. Ferguson. 1989. Structure, evolution, and biology of pollen in Leguminosae.In: C. H. Stirton & J. L. Zarucchi, editors. Advances in legume biology. Monographs in Systematic Botany from the Missouri Botanical Garden 29: 77–103.

  • Hasegawa, M., H. Kishino &T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21: 160–174.

    Article  Google Scholar 

  • Hu, J.-M., M. Lavin, M. F. Wojciechowski &M. J. Sanderson. 2000. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplasttrnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. American Journal of Botany 87: 418–430.

    Article  PubMed  CAS  Google Scholar 

  • ———&—. 2002. Phylogenetic analysis of nuclear ribosomal ITS/5. 8S sequences in the tribe Millettieae (Fabaceae):Poecilanthe-Cycolobium, the core Millettieae, and theCallerya group. Systematic Botany 27: 722–733.

    Google Scholar 

  • Hutchinson, J. 1964. The genera of flowering plants. Vol. 1. Dicotyledones Oxford University Press, Oxford, UK.

    Google Scholar 

  • Isely, D., 1962. Leguminosae of the north-central states IV: Psoraleae. Iowa State Journal of Science 37: 103–162.

    Google Scholar 

  • Kajita, T., H. Ohashi, Y. Tateishi, C. D. Bailey &J. J. Doyle. 2001.rbcL and legume phylogency, with particular reference to Phaseoleae, Millettieae, and allies. Systematic Botany 26: 515–536.

    Google Scholar 

  • Lavin, M., R. T. Pennington, B. B. Klitgaard, J. I. Sprent, H. C. de Lima &P. E. Gasson. 2001. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. American Journal of Botnay 88: 503–533.

    Article  Google Scholar 

  • Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46: 523–536.

    Article  Google Scholar 

  • Mansano, V. D., V. Bittrich, A. M. C. D. Tozzi &A. P. de Souza. 2004. Composition of theLecointea clade (Leguminosae, Papilionoideae, Swartzieae), a re-evaluation based on combined evidence from morphology and molecular data. Taxon 53: 1007–1018.

    Article  Google Scholar 

  • McMahon, M. &L. Hufford. 2002. Morphology and structural homology of corolla-androecium synorganization in the tribe Amorpheae (Fabaceae: Papilionoideae). American Journal of Botany 89: 1884–1898.

    Google Scholar 

  • —&—. 2004. Phylogeny of Amorpheae (Fabaceae: Papilionoideae). American Journal of Botany 91: 1219–1230.

    Google Scholar 

  • —&—. 2005. Evolution and development in the amorphoid clade (Amorpheae: Papilionoideae: Leguminosae): petal loss and dedifferentiation. International Journal of Plant Sciences 166: 383–396.

    Article  Google Scholar 

  • Munz, P. A., 1959. A California flora. University of California Press, Berkeley, USA.

    Google Scholar 

  • Pennington, R. T., B. B. Klitgaard, H. Ireland &M. Lavin. 2000. New insights into floral evolution from molecular phylogenies. Pages 233–248.In: P. S. Herendeen & A. Bruneau, editors, Advances in legume systematics. Part 9. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • —,M. Lavin, H. Ireland, B. Klitgaard, J. Preston &J.-M. Hu. 2001. Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplasttrnL intron. Systematic Botany 26: 537–556.

    Google Scholar 

  • Polhill, R. M., 1981. Papilionoideae. Pages. 191–204.In: R. M. Polhill & P. H. Raven, editor, Advances in legume systematics. Part 1. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • Posada, D. &K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Prenner, G. 2004. The asymmetric androecium in Papilionoideae (Leguminosae): definition, occurrence, and possible systematic value. International Journal of Plant Sciences 165: 499–510.

    Article  Google Scholar 

  • Rydberg, P. A., 1919. Fabaceae: Psoraleae, part 1. North American Flora 24: 1–34, 40–64.

    Google Scholar 

  • —, 1920. Fabaceae: Psoraleae, part 2. North American Flora 24: 65–136.

    Google Scholar 

  • — 1928a Genera of North American Fabaceae III: tribe Psoraleae. American Journal of Botany 15: 195–203.

    Article  Google Scholar 

  • — 1928b. Genera of North American Fabaceae IV: tribe Psoraleae (continued). American Journal of Botany 15: 425–432.

    Article  Google Scholar 

  • Scherson, R., R.-K. Choi, D. Cook &M. J. Sanderson. 2005. Phylogenetics of New World Astragalus: the utility of genomics technology in reconstructing phylogenies at low taxonomic levels. Britonia 57: 354–366.

    Article  Google Scholar 

  • Shimodaira, H. &M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.

    CAS  Google Scholar 

  • Shreve, F. &I. L. Wiggins. 1964. Vegetation and flora of the Sonoran Desert. Stanford University Press, Stanford, California, USA.

    Google Scholar 

  • Swofford, D. L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b 10. Sinauer, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Taubert, P. H. W. 1894. Galegeae Psoraliinae. Rages 263–265.In: A. Engler & K. Prantl. editors. Die Natürlichen pflanzenfamilien teile III, abteilungen 3.

  • Tucker, S. C. &C. H. Stirton. 1991. Development of the cymose inflorescence, cupulum and flower ofPsoralea pinnata (Leguminosae: Papilionoideae: Psoraleeae), Botanical Journal of the Linnean Society 106: 209–227.

    Article  Google Scholar 

  • Turner G., 1986. Comparative development of secretory cavities in the tribes Amorpheae and Psoraleeae (Leguminosae: Papilionoideae). American Journal of Botany 73: 1178–1192.

    Article  Google Scholar 

  • Wiggins, I. L., 1980. Flora of Baja California. Stanford University Press, Stanford, California, USA.

    Google Scholar 

  • Wojciechowski, M. F., M. Lavin &M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastidmatK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846–1862.

    CAS  Google Scholar 

  • Wolfe, A. D. &C. P. Randle. 2004. Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Systematic Botany 29: 1011–1020.

    Article  Google Scholar 

  • Yang, Z., 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306–314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. McMahon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, M.M. Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae. Brittonia 57, 397–411 (2005). https://doi.org/10.1663/0007-196X(2005)057[0397:PRAFEI]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0007-196X(2005)057[0397:PRAFEI]2.0.CO;2

Key words

Navigation