Advertisement

Brittonia

, Volume 57, Issue 4, pp 397–411 | Cite as

Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae

  • Michelle M. McMahon
Systematics

Abstract

Amorpheae (Fabaceae: Papilionoideae) was first considered a natural group by Rupert Barneby in his illustrated monographDaleae Imagines. Amorpheae currently comprise eight genera, ca. 250 spp., and extensive floral diversity, including loss of corolla and addition of a stemonozone. The Amorpheae and many of Barneby’s subtribal groups are supported as monophyletic by previous phylogenetic analysis of nuclear ribosomal and chloroplast sequence data. However, some relationships remain unclear. A nuclear marker derived from a genomic study inMedicago CNGC 4, was sequenced in selected Amorpheae This is one of the first applications of this marker. for phylogenetic study. The new data confirm some relationships inferred usingtrnK and ITS, but also provide evidence for new arrangements. Combined data were used to explore several aspects of Barneby’s taxonomic framework. The phylogeny, in concert, with data on floral morphology, implies that simplification of the complex papilionoid flower has occurred several times in the history of the Amorpheae.

Key words

Amropheae Barneby CNGC4 Dalea floral evolution Papilionoiedeae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Álvarez, I. &J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434.PubMedCrossRefGoogle Scholar
  2. Bailey, C. D., T. G. Carr, S. A. Harris &C. E. Hughes. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29: 435–455.PubMedCrossRefGoogle Scholar
  3. —,C. E. Hughes &S. A. Harris. 2004. Using RAPDs to identify DNA sequence loci for species level phylogeny reconstruction: an example fromLeucaena (Fabaceae). Systematic Botany 29: 4–14.CrossRefGoogle Scholar
  4. Barker, F. K. &F. M. Lutzoni. 2002. The utility of the incongruence length difference test. Systematic Biology 51: 625–637.PubMedCrossRefGoogle Scholar
  5. Barneby, R. C. 1962 A synopsis ofErrazurizia. Leaflets of Western Botany 9: 209–214.Google Scholar
  6. — 1977. Daleae imagines: an illustrated revision ofErrazurizia Philippi,Psorothamnus Rydberg,Marina Liebmann, andDalea Lucanus emend. Barneby, including all species of Leguminosae tribe Amorpheae Borissova ever referred toDalea. Memoris of The New York Botanical Garden 27: 1–891.Google Scholar
  7. — 1980. Three new species ofDalea sect.Parosela (Leguminosae: Amorpheae) from western and southern Mexico. Brittonia 32: 392–396.CrossRefGoogle Scholar
  8. —, 1981. New species ofDalea sectionParosela (Leguminosae: Amorpheae) from Peru and Mexico. Brittonia 33: 508–511.CrossRefGoogle Scholar
  9. — 1988. The genusDalea (Fabaceae tribe Amorpheae) in Departmento de Cajamarca, Peru, with description of three new species. Brittonia 40: 1–6.CrossRefGoogle Scholar
  10. — 1990. Two new taxa inDalea (Fabaceae: Amorpheae) from southern Mexico and northern Chile. Brittonia 42: 89–91.CrossRefGoogle Scholar
  11. Bentham, G. 1865. Leguminosae. Pages 434–600.In: G. Bentham & J. D. Hooker, editors. Genera plantarum, Lovell Reeve & Co., London, UK.Google Scholar
  12. Choi, H. K., D. Kim, T. Uhm, E. Limpens, H. Lim, J.-H. Mun, P. Kalo, R. V. Penmetsa, A. Seres, O. Kulikova, B. A. Roe, T. Bisseling, G. B. Kiss &D. R. Cook. 2004a. A sequence-based genetic map ofMedicago truncatula and comparison of marker colinearity withM. sativa. Gentics 166: 1463–1502.CrossRefGoogle Scholar
  13. —. 2004b. Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Science 43: 15289–15294.CrossRefGoogle Scholar
  14. Corby, H. D. L., 1981. The systematic value of leguminous root nodules. Pages. 657–670.In: R. M. Polhili & P. H. Raven, editors. Advances in legume systematics. Part 2. Royal Botanic Gardens, Kew, UK.Google Scholar
  15. Crase, D. 2004. Both: a portrait in two parts. Pantheon Books, New York, USA.Google Scholar
  16. Doyle, J. J. &J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.Google Scholar
  17. Driskell, A. C., C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O’Meara &M. J. Sanderson. 2004. Prospects for building the tree of life from large sequence databases. Science 306: 1172–1174.PubMedCrossRefGoogle Scholar
  18. Endress, P. K., 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press. Cambridge, UK.Google Scholar
  19. Estrada-C, A. E., J. A. Villarreal-Q. &M. González-E. 2004. A new species ofDalea sect.Parosela (Fabaceae: Amorpheae) from Mexico, Brittonia 56: 67–71.CrossRefGoogle Scholar
  20. Farris, J. S., M. Källersjö, A. G. Kluge &C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.CrossRefGoogle Scholar
  21. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38: 783–791.CrossRefGoogle Scholar
  22. Ferguson, I. K. 1990. The significance of some pollen morphological characters of the tribe Amorpheae and of the genusMucuna (tribe Phaseoleae) in the biology and systematics of subfamily Papilionoideae (Leguminosae). Review of Palaeobotany and Palynology 64: 129–36.CrossRefGoogle Scholar
  23. — &J. J. Skvarla. 1981. The pollen morphology of the subfamily Papilionoideae (Leguminosae). Pages 859–896.In: R. M. Polhill & P. H. Raven, editors. Advances in legume systematics. Part 2. Royal Botanic Gardens Kew, UK.Google Scholar
  24. Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47: 90–17.CrossRefGoogle Scholar
  25. Guinet, P. & I. K. Ferguson. 1989. Structure, evolution, and biology of pollen in Leguminosae.In: C. H. Stirton & J. L. Zarucchi, editors. Advances in legume biology. Monographs in Systematic Botany from the Missouri Botanical Garden 29: 77–103.Google Scholar
  26. Hasegawa, M., H. Kishino &T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21: 160–174.CrossRefGoogle Scholar
  27. Hu, J.-M., M. Lavin, M. F. Wojciechowski &M. J. Sanderson. 2000. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplasttrnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. American Journal of Botany 87: 418–430.PubMedCrossRefGoogle Scholar
  28. ———&—. 2002. Phylogenetic analysis of nuclear ribosomal ITS/5. 8S sequences in the tribe Millettieae (Fabaceae):Poecilanthe-Cycolobium, the core Millettieae, and theCallerya group. Systematic Botany 27: 722–733.Google Scholar
  29. Hutchinson, J. 1964. The genera of flowering plants. Vol. 1. Dicotyledones Oxford University Press, Oxford, UK.Google Scholar
  30. Isely, D., 1962. Leguminosae of the north-central states IV: Psoraleae. Iowa State Journal of Science 37: 103–162.Google Scholar
  31. Kajita, T., H. Ohashi, Y. Tateishi, C. D. Bailey &J. J. Doyle. 2001.rbcL and legume phylogency, with particular reference to Phaseoleae, Millettieae, and allies. Systematic Botany 26: 515–536.Google Scholar
  32. Lavin, M., R. T. Pennington, B. B. Klitgaard, J. I. Sprent, H. C. de Lima &P. E. Gasson. 2001. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. American Journal of Botnay 88: 503–533.CrossRefGoogle Scholar
  33. Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46: 523–536.CrossRefGoogle Scholar
  34. Mansano, V. D., V. Bittrich, A. M. C. D. Tozzi &A. P. de Souza. 2004. Composition of theLecointea clade (Leguminosae, Papilionoideae, Swartzieae), a re-evaluation based on combined evidence from morphology and molecular data. Taxon 53: 1007–1018.CrossRefGoogle Scholar
  35. McMahon, M. &L. Hufford. 2002. Morphology and structural homology of corolla-androecium synorganization in the tribe Amorpheae (Fabaceae: Papilionoideae). American Journal of Botany 89: 1884–1898.Google Scholar
  36. —&—. 2004. Phylogeny of Amorpheae (Fabaceae: Papilionoideae). American Journal of Botany 91: 1219–1230.Google Scholar
  37. —&—. 2005. Evolution and development in the amorphoid clade (Amorpheae: Papilionoideae: Leguminosae): petal loss and dedifferentiation. International Journal of Plant Sciences 166: 383–396.CrossRefGoogle Scholar
  38. Munz, P. A., 1959. A California flora. University of California Press, Berkeley, USA.Google Scholar
  39. Pennington, R. T., B. B. Klitgaard, H. Ireland &M. Lavin. 2000. New insights into floral evolution from molecular phylogenies. Pages 233–248.In: P. S. Herendeen & A. Bruneau, editors, Advances in legume systematics. Part 9. Royal Botanic Gardens, Kew, UK.Google Scholar
  40. —,M. Lavin, H. Ireland, B. Klitgaard, J. Preston &J.-M. Hu. 2001. Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplasttrnL intron. Systematic Botany 26: 537–556.Google Scholar
  41. Polhill, R. M., 1981. Papilionoideae. Pages. 191–204.In: R. M. Polhill & P. H. Raven, editor, Advances in legume systematics. Part 1. Royal Botanic Gardens, Kew, UK.Google Scholar
  42. Posada, D. &K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  43. Prenner, G. 2004. The asymmetric androecium in Papilionoideae (Leguminosae): definition, occurrence, and possible systematic value. International Journal of Plant Sciences 165: 499–510.CrossRefGoogle Scholar
  44. Rydberg, P. A., 1919. Fabaceae: Psoraleae, part 1. North American Flora 24: 1–34, 40–64.Google Scholar
  45. —, 1920. Fabaceae: Psoraleae, part 2. North American Flora 24: 65–136.Google Scholar
  46. — 1928a Genera of North American Fabaceae III: tribe Psoraleae. American Journal of Botany 15: 195–203.CrossRefGoogle Scholar
  47. — 1928b. Genera of North American Fabaceae IV: tribe Psoraleae (continued). American Journal of Botany 15: 425–432.CrossRefGoogle Scholar
  48. Scherson, R., R.-K. Choi, D. Cook &M. J. Sanderson. 2005. Phylogenetics of New World Astragalus: the utility of genomics technology in reconstructing phylogenies at low taxonomic levels. Britonia 57: 354–366.CrossRefGoogle Scholar
  49. Shimodaira, H. &M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.Google Scholar
  50. Shreve, F. &I. L. Wiggins. 1964. Vegetation and flora of the Sonoran Desert. Stanford University Press, Stanford, California, USA.Google Scholar
  51. Swofford, D. L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b 10. Sinauer, Sunderland, Massachusetts, USA.Google Scholar
  52. Taubert, P. H. W. 1894. Galegeae Psoraliinae. Rages 263–265.In: A. Engler & K. Prantl. editors. Die Natürlichen pflanzenfamilien teile III, abteilungen 3.Google Scholar
  53. Tucker, S. C. &C. H. Stirton. 1991. Development of the cymose inflorescence, cupulum and flower ofPsoralea pinnata (Leguminosae: Papilionoideae: Psoraleeae), Botanical Journal of the Linnean Society 106: 209–227.CrossRefGoogle Scholar
  54. Turner G., 1986. Comparative development of secretory cavities in the tribes Amorpheae and Psoraleeae (Leguminosae: Papilionoideae). American Journal of Botany 73: 1178–1192.CrossRefGoogle Scholar
  55. Wiggins, I. L., 1980. Flora of Baja California. Stanford University Press, Stanford, California, USA.Google Scholar
  56. Wojciechowski, M. F., M. Lavin &M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastidmatK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846–1862.Google Scholar
  57. Wolfe, A. D. &C. P. Randle. 2004. Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Systematic Botany 29: 1011–1020.CrossRefGoogle Scholar
  58. Yang, Z., 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306–314.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2005

Authors and Affiliations

  1. 1.University of California DavisDavisU.S.A.

Personalised recommendations