Advertisement

Brittonia

, Volume 57, Issue 4, pp 334–344 | Cite as

Genetic characterization of three varieties of Astragalus lentiginosus (Fabaceae)

  • Brian J. Knaus
  • Rich C. Cronn
  • Aaron Liston
Taxonomy

Abstract

Astragalus lentiginosus is a polymorphic species that occurs in geologically young habitats and whose varietal circumscription implies active morphological and genetic differentiation. In this preliminary study, we evaluate the potential of amplified fragment length polymorphism (AFLP) markers to resolve infraspecific taxa in three varieties ofAstragalus lentiginosus. Distance-based principle coordinate and neighbor-joining analyses result in clustering of individuals that is congruent with population origin and varietal circumscription. Analysis of molecular variance of two Oregon varieties demonstrates that varietal categories account for 11% of the total variance; in contrast, geographic proximity does not contribute to the total variance. AFLPs demonstrate an ability to discriminate varieties ofA. lentiginosus despite a potentially confounding geographic pattern, and may prove effective at inferring relationships throughout the group.

Key words

AFLP amplified fragment length polymorphism Astragalus lentiginosus genetic differentiation infraspecific taxa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdelfattah, B., H. E. Shazly, H. E. Rabey &L. E. Watson. 2002. Systematic relationships inLathyrus sect.Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Canadian Journal of Botany 80: 962–969.CrossRefGoogle Scholar
  2. Alexander, J. A.. 2005. The taxonomic status ofAstragalus mokiacensis (Fabaceae), a species endemic to southwestern United States. Brittonia 57: 320–333.CrossRefGoogle Scholar
  3. Allphin, L., N. Brian & T. Matheson. In press. Reproductive success and genetic divergence among varieties of the rare and endangeredAstragalus cremnophylax (Fabaceae) from Arizona. USA. Conservation Genetics.Google Scholar
  4. Barneby, R. C. 1945.Pugillus Astragalorum IV: the sectionDiplocystium. Leaflets of Western Botany 4: 65–147.Google Scholar
  5. — 1964. Atlas of North AmericanAstragalus. Memoirs of The New York Botanical Garden 13: 911–958.Google Scholar
  6. — 1964.Dragma hippomanicum III:novitates Californicae. Brittonia 29: 376–381.CrossRefGoogle Scholar
  7. — 1989.Astragalus lentiginosus. Pages 157–164.In: A. Cronquist, A. H. Holmgren, N. H. Holmgren, J. L. Reveal & P. K. Holmgren, editors. Intermountain Flora 3B. The New York Botanical Garden, New York.Google Scholar
  8. Beardsley, P. M., A. Yen &R. G. Olmstead. 2003. AFLP phylogeny ofMimulus sectionErythranthe and evolution of hummingbird pollination. Evolution. 57: 1397–1410.PubMedGoogle Scholar
  9. Brouat, C., D. McKey &E. J. P. Douzery. 2004. Differentiation in a geographical mosaic of plants coevolving with ants: phylogeny of theLeonardoxa africana complex (Fabaceae: Caesalpinioideae) using amplified fragment length polymorphism markers. Molecular Ecology 13: 1157–1171.PubMedCrossRefGoogle Scholar
  10. Chen, D. H. &P. C. Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter 17: 53–57.CrossRefGoogle Scholar
  11. Dice, L. R. 1945. Measures of the amount of ecological association between species. Ecology 26: 297–302.CrossRefGoogle Scholar
  12. Excoffier, L., P. E. Smouse &J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  13. Grayson, D. K. 1993. The desert’s past. Smithsonian Institution Press, Washington, D.C.Google Scholar
  14. He, T., S. L. Krauss, B. B. Lamont, B. P. Miller &N. L. Enright. 2004. Long-distance seed dispersal in a metapopulation ofBanksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology 13: 1099–1109.PubMedCrossRefGoogle Scholar
  15. Isely, D. 1998. Native and naturalized Leguminosae (Fabaceae) of the United States. Monte L. Bean Life Science Museum. Provo, Utah.Google Scholar
  16. Jones, M. E.. 1923. Revision of North AmericanAstragalus. Published by the author. Salt Lake City, Utah.Google Scholar
  17. Juan, A., M. B. Crespo, R. S. Cowan, C. Lexer &M. F. Fay. 2004. Patterns of variability and gene flow inMedicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molecular Ecology 13: 2679–2690.PubMedCrossRefGoogle Scholar
  18. Koopman, W. J. M. &G. Gort. 2004. Significance tests and weighted values for AFLP similarities, based onArabidopsis in silico AFLP fragment length distributions Genetics 167: 1915–1928.PubMedCrossRefGoogle Scholar
  19. Lamboy, W. F. 1994. Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Methods and Applications 4: 31–37.PubMedGoogle Scholar
  20. Liston, A.. 1992. Variation in the chloroplast genesrpoC1 andrpoC2 of the genusAstragalus (Fabaceae): evidence from restriction site mapping of a PCR-amplified fragment. American Journal of Botany 79: 953–961.CrossRefGoogle Scholar
  21. Lynch, M. 1990. The similarity index and DNA fingerprinting. Molecular Biology and Evolution 7: 478–484.PubMedGoogle Scholar
  22. Mueller, U. G. &L. L. Wolfenbarger 1999. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14: 389–394.PubMedCrossRefGoogle Scholar
  23. Peakall, R. &P. E. Smouse. 2001. Gen AlEx V5: Genetic analysis in Excel. Australian National University. Canberra, Australia. <http://www.anu.edu.au/BoZo/Gen AlEx>.Google Scholar
  24. Rinehart, T. A.. 2004. AFLP analysis using Gene-Mapper® software and an Excel® macro that aligns and converts output to binary. Biotechniques 37: 186–188.PubMedGoogle Scholar
  25. Rohlf, F. J. 2000. NTSYSpc, v2.1. Exeter Software. Setauket, New York.Google Scholar
  26. Rydberg, P. A. 1929. Astragalanae. North American Flora 24: 251–462.Google Scholar
  27. Saito, N. &M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tress. Molecular Biology and Evolution. 4: 406–425.Google Scholar
  28. Sanderson, M. J. &J. J. Doyle. 1993. Phylogenetic relationships in North AmericanAstragalus (Fabaceae) based on chloroplast DNA restriction site variation. Systematic Botany 18: 395–408.CrossRefGoogle Scholar
  29. Spellenberg, R. 1976. Chromosome numbers and their cytotaxonomic significance for North AmericanAstragalus (Fabaceae). Taxon 25: 463–476.CrossRefGoogle Scholar
  30. Travis, S. E., J. Maschinski &P. Keim. 1996. An analysis of genetic variation inAstragalus cremnophylax var.cremnophylax, a critically-endangered plant, using AFLP markers. Molecular Ecology 5: 735–745.PubMedGoogle Scholar
  31. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper &M. Zabeau 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.PubMedCrossRefGoogle Scholar
  32. Welsh, S. L.. 1981. New taxa of western plants-in tribute. Brittonia 33: 294–303.CrossRefGoogle Scholar
  33. Wojciechowski, M. F., M. J. Sanderson, B. G. Baldwin &M. J. Donoghue. 1993. Monophyly of aneuploidAstragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 80: 711–722.CrossRefGoogle Scholar
  34. ——. 1999. Evidence on the monophyly ofAstragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNAtrnL intron data. Systematic Botany 24: 409–437.CrossRefGoogle Scholar
  35. Wolfe, A. D. &A. Liston. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. Pages 43–86.In: D. E. Soltis, P. S. Soltis and J. J. Doyle, editors. Molecular systematics of plants II: DNA sequencing. Kluwer Academic, Boston, Massachusetts.Google Scholar

Copyright information

© The New York Botanical Garden 2005

Authors and Affiliations

  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisU.S.A.
  2. 2.USDA Forest Service Pacific Northwest Research StationCorvallisU.S.A.

Personalised recommendations