The Botanical Review

, 69:125 | Cite as

Two theories of origin of the land-plant sporophyte: Which is left standing?

  • Will H. Blackwell

Abstract

Questions concerning the two competing theories of the development of alternating generations in land plants, the homologous theory and the antithetic theory, have never been fully resolved. In the majority of recent accounts there appears to have been increasing de facto support (if one considers the ontogenetic processes and phylogenetic consequences discussed) for the antithetic theory. However, this preference is usually not plainly stated (as such) in these discussions, and some support has also continued for the homologous theory. The crux of both theories (homologous and antithetic) centers upon how the sporophyte may have originated in the life cycle. One problem with the homologous theory is that it is not made explicit how the development of a dependent sporophyte could have occurred in the life cycle (when the precedent organisms are considered to have had free-living, putatively similar, gametophytes and sporophytes). The antithetic theory, by contrast, offers a definite ontogenetic mechanism or process (retention of the zygote on the gametophyte, delay of zygotic meiosis, with zygotic mitoses occurring first) by which a dependent sporophyte might have originated and persisted, in the context of a life cycle formerly lacking a sporophyte generation. Also, a review of a variety of evidence (morphological, cytological, biochemical, etc.) would appear to lend more support to the antithetic theory than to the homologous theory. In discussing types of algae now known to be most clearly related to land plants (i.e., charophytes, particularly advanced forms), the type of life cycle exhibited by these particular algae (haplontic, with zygotic meiosis; no sporophyte present) suggests that only an antithetic origin of the sporophyte in land plants is actually feasible.

Keywords

Green Alga Botanical Review Land Plant Motile Cell Homologous Theory 

Literature Cited

  1. Al-Houty, F. A. A. &P. J. Syrett. 1984. The occurrence of urease/urea amidolyase and glycolate oxidase/ dehydrogenase inKlebsormidium spp. and members of the Ulotrichales. Brit. Phycol. J. 19: 1–10.CrossRefGoogle Scholar
  2. Arber, A. R. 1950. The natural philosophy of plant form. Cambridge Univ. Press, Cambridge.Google Scholar
  3. Beech, P. L., K. Heimann &M. Melkonian. 1991. Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164: 23–37.CrossRefGoogle Scholar
  4. Blackwell, W. H. &M. J. Powell. 1995. Where have all the algae gone, or, how many kingdoms are there? Amer. Biol. Teacher 57: 160–167.Google Scholar
  5. —. 1999. Reconciling kingdoms with codes of nomenclature: Is it necessary? Syst. Biol. 48: 406–412.PubMedCrossRefGoogle Scholar
  6. —. 2000. A review of group fililation of stramenopiles, additional approaches to the question. Evol. Theory & Rev. 12(3): 49–88.Google Scholar
  7. Bold, H. C. 1948. The occurrence of chlorophyll in the sporophyte ofRicciocarpus natans. Amer. J. Bot. 35: 440–443.CrossRefGoogle Scholar
  8. —. 1957. Morphology of plants. Harper & Brothers, New York.Google Scholar
  9. — &M. J. Wynne. 1978. Introduction to the algae: Structure and reproduction. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  10. ——. 1985. Introduction to the algae: Structure and reproduction. Ed. 2. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  11. —,C. J. Alexopoulos &T. Delevoryas. 1980. Morphology of plants and fungi. Ed. 4. Harper & Row, New York.Google Scholar
  12. ———. 1987. Morphology of plants and fungi. Ed. 5. Harper & Row, New York.Google Scholar
  13. Bower, F. O. 1908. The origin of a land flora. Macmillan, London.Google Scholar
  14. —. 1935. Primitive land plants. Macmillan, London.Google Scholar
  15. Bremer, K. 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369–385.Google Scholar
  16. —. 1986. Systematics of the green algae (Irvine, D.E.G. & John, D.M. (Eds.), a review. Cladistics 2: 378–381.CrossRefGoogle Scholar
  17. — &H. E. Wanntorp. 1981a. A cladistic classification of green plants. Nord. J. Bot. 1: 1–3.CrossRefGoogle Scholar
  18. ——. 1981b. The cladistic approach to plant classification. Pp. 87–94in V. Funk & D. R. Brooks (eds.), Advances in cladistics: Proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, Bronx.Google Scholar
  19. —,C. J. Humphries, B. D. Mishler &S. P. Churchill. 1987. On cladistic relationships in green plants. Taxon 36: 339–349.CrossRefGoogle Scholar
  20. Brown, W. H. 1935. The plant kingdom: A textbook of general botany. Ginn & Company, Boston.Google Scholar
  21. Burns, G W. 1974. The plant kingdom. Macmillan, New York.Google Scholar
  22. Campbell, D. H. 1940. The evolution of land plants (Embryophyta). Stanford Univ. Press, Palo Alto, CA.Google Scholar
  23. Campbell, N. A., J. B. Reece &L. G. Mitchell. 1999. Biology. Ed. 5. Benjamin Cummings, CA.Google Scholar
  24. Cavalier-Smith, T. 1981. Eukaryote kingdoms, seven or nine? BioSystems 14: 461–481.PubMedCrossRefGoogle Scholar
  25. Church, A. H. 1919. Thalassiophyta and the subaerial transmigration. Botanical Memoirs, 3. Oxford Univ. Press, Oxford.Google Scholar
  26. Croft, A. 1952. A newTrochiliscus (Charophyta) from the Downtownian of Podolia. Bull. Brit. Mus. (Nat. Hist), Geol. 1: 187–220.Google Scholar
  27. Cronquist, A. 1961. Introductory botany. Harper & Row, New York.Google Scholar
  28. Delevoryas, T. 1977. Plant diversification. Ed. 2. Holt, Rinehart & Winston, New York.Google Scholar
  29. Ditmer, H. J. 1964. Phylogeny and form in the plant kingdom. Van Nostrand, Toronto.Google Scholar
  30. Dodge, J. D. 1973. The fine structure of algal cells. Academic Press, London.Google Scholar
  31. Eames, A. J. 1936. Morphology of vascular plants: Lower groups (Psilophytales to Filicales). McGraw-Hill, New York.Google Scholar
  32. Foster, A. S. &E. M. Gifford. 1959. Comparative morphology of vascular plants. W. H. Freeman, San Francisco.Google Scholar
  33. Frederick, S. E., P. J. Gruber &N. E. Tolbert. 1973. The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants: An evolutionary survey. Pl Physiol. (Lancaster) 52: 318–323.Google Scholar
  34. Fritsch, F. E. 1916. The algal ancestry of higher plants. New Phytol. 15: 233–250.CrossRefGoogle Scholar
  35. —. 1935. The structure and reproduction of the algae. Vol. 1. Cambridge Univ. Press, Cambridge.Google Scholar
  36. Gifford, E. M. &A. S. Foster. 1989. Morphology and evolution of vascular plants. Ed. 3. W. H. Freeman, New York.Google Scholar
  37. Goebel, K. 1930. Organographie der Pflanzen. Ed. 3. G. Fischer, Jena, Germany.Google Scholar
  38. Graham, L. E. 1982. The occurrence, evolution, and phylogenetic significance of parenchyma inColeochaete Breb. (Chlorophyta). Amer. J. Bot. 69: 447–454.CrossRefGoogle Scholar
  39. —. 1984.Coleochaete and the origin of land plants. Amer. J. Bot. 71: 603–608.CrossRefGoogle Scholar
  40. —. 1985. The origin of the life cycle of land plants. Amer. Scientist 73: 178–186.Google Scholar
  41. —. 1993. Origin of land plants. Wiley & Sons, New York.Google Scholar
  42. — &L. W. Wilcox. 1983. The occurrence and phylogenetic significance of putative placental transfer cells in the green algaColeochaete. Amer. J. Bot. 70, 113–120.CrossRefGoogle Scholar
  43. ——. 2000. Algae. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  44. Gray, J. 1985. The microfossil record of early land plants: Advances in understanding of early terrestrialization. Pp. 167–195in W. G. Chaloner & J. D. Lawson (eds.), Evolution and environment in the late Silurian and early Devonian. Phil. Trans. Roy. Soc. London, B, 309.Google Scholar
  45. Green, P. B. 1962. Cell expansion. Pp. 625–632in R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York & London.Google Scholar
  46. Groover, R. D. &H. C. Bold. 1969. The taxonomy and comparative physiology of the Chlorosarcinales, and certain other edaphic algae. Phycological Studies, 8. Univ. of Texas, Austin.Google Scholar
  47. Haberlandt, G. 1914. Physiological plant anatomy. M. Drummond, trans. Macmillan, London.Google Scholar
  48. Haupt, A. W. 1953. Plant morphology. McGraw-Hill, New York.Google Scholar
  49. Hofmeister, W. 1851. Vergleichende Untersuchgungen. Friedrich Hofmeister, Leipzig, Germany.Google Scholar
  50. Jeffrey, C. 1962. The origin and differentiation of the archegoniate land-plants. Bot. Not. 115: 446–454.Google Scholar
  51. Kaplan, D. R. 2001. The science of plant morphology: Definition, history, and role in modern biology. Amer. J. Bot. 88: 1711–1741.CrossRefGoogle Scholar
  52. Karol, K. G., R. M. McCourt, M. T. Cimino &C. F. Delwiche. 2001. The closest living relatives of land plants. Science 294: 2351–2353.PubMedCrossRefGoogle Scholar
  53. Katana, A., J. Kwiatowski, K. Spalik &B. Zakrys. 2001. Phylogenetic position ofKoliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J. Phycol. 37: 443–451.CrossRefGoogle Scholar
  54. Kranz, H. D., D. Miks, M. L. Siegler, I. Capesius, C. W. Sensen &V. A. R. Huss. 1995. The origin of land plants: Phylogenetic relationship among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA sequences. J. Molec. Evol. 41: 74–84.PubMedCrossRefGoogle Scholar
  55. Lee, R. E. 1999. Phycology. Ed. 3. Cambridge Univ. Press, Cambridge.Google Scholar
  56. Mandai, D. K. &S. Ray. 2001. Karyotype analysis and cytotaxonomic study in the genusNitella (Charophyceae). Phytomorphology 51: 27–32.Google Scholar
  57. Manhart, J. R. &J. D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345: 268–270.PubMedCrossRefGoogle Scholar
  58. Marchant, H. J. &J. D. Pickett-Heaps. 1973. Mitosis and cytokinesis inColeochaete scutata. J. Phycol. 9: 461–471.Google Scholar
  59. Mattox, K. R. &K. D. Stewart. 1984. Classification of the green algae: A concept based on comparative cytology. Pp. 29–72in D. E. G. Irvine & D. M. John (eds.), Systematics of the green algae. Academic Press, London & Orlando.Google Scholar
  60. McCourt, R. M. 1995. Green algal phylogeny. Trends Ecol. Evol. 10: 159–163.CrossRefGoogle Scholar
  61. Melkonian, M. 1982. Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 31: 255–265.CrossRefGoogle Scholar
  62. Minkoff, E. C. 1983. Evolutionary biology. Addison Wesley, Reading, MA.Google Scholar
  63. Mishler, B. D. &S. P. Churchill. 1984. A cladistic approach to the phylogeny of the “bryophytes.” Brittonia 36: 406–424.CrossRefGoogle Scholar
  64. ——. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305–328.Google Scholar
  65. Nakayama, T., B. Marin, H. D. Kranz, B. Surek, I. Inouye &M. Melkonian. 1998. The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclearencoded SSU rRNA sequences. Protist 149: 367–380.Google Scholar
  66. Niklas, K. J. 1992. Plant biomechanics: An engineering approach to plant form and function. Univ. of Chicago Press, Chicago & London.Google Scholar
  67. —. 1994. Plant allometry: The scaling of form and process. Univ. of Chicago Press, Chicago & London.Google Scholar
  68. —. 1997. The evolutionary biology of plants. Univ. of Chicago Press, Chicago & London.Google Scholar
  69. Okuda, K. &R. M. Brown Jr. 1992. A new putative cellulose-synthesizing complex ofColeochaete scutata. Protoplasma 168: 51–63.CrossRefGoogle Scholar
  70. Pickett-Heaps, J. D. 1975. Green algae: Structure, reproduction and evolution in selected genera. Sinauer Associates, Sunderland, MA.Google Scholar
  71. —. 1976. Cell division in eukaryotic algae. BioScience 26: 445–450.CrossRefGoogle Scholar
  72. Prescott, G W. 1968. The algae: A review. Houghton-Mifflin, Boston.Google Scholar
  73. Pringsheim, N. 1878. Ueber Sprossung der Moosfruchte und den Generationswechsel der Thallophyten. Jahrb. Wiss. Bot. 11: 1–46.Google Scholar
  74. Pritchard, H. N. &P. T. Bradt. 1984. Biology of nonvascular plants. Times Mirror/Mosby, Saint Louis.Google Scholar
  75. Purves, W. K., G H. Orians, H. C. Heller &D. Savada. 1998. Life: The science of biology. Ed. 5. Sinauer, Sunderland, MA.Google Scholar
  76. Remy, W. &H. Hass. 1986. Das Ur—Landpflanzen-Konzept—unter besonderer Berucksichtigung der Organization Altdevonisher Gametophyten. Argum. Palaeobot. 7: 173–214.Google Scholar
  77. — &R. Remy. 1980. Devonian gametophytes with anatomically preserved gametangia. Science 208: 295–296.PubMedCrossRefGoogle Scholar
  78. Renzaglia, K. S. &K. C. Vaughn. 2000. Anatomy, development and classification of hornworts. Pp. 1–20in A. H. Shaw & B. Goffinet (eds.), Bryophyte biology. Cambridge Univ. Press, Cambridge.Google Scholar
  79. Ruse, M. 1988. Philosophy of biology today. State Univ. Press of New York, Albany.Google Scholar
  80. Sattler, R. 1986. Biophilosophy: Analytic and holistic perspectives. Springer-Verlag, Berlin.Google Scholar
  81. —. 1998. On the origin of symmetry, branching and phyllotaxis in land plants. Pp. 775–793in R. V. Jean & D. Barabe (eds.), Symmetry in plants. World Scientific, Singapore.Google Scholar
  82. Scagel, R. F., R. J. Bandoni, J. R. Maze, G E. Rouse, W. B. Schofield &J. R. Stein. 1984. Plants: An evolutionary survey. Wadsworth, Belmont, CA.Google Scholar
  83. Schofield, W. B. 1985. Introduction to bryology. Macmillan, New York.Google Scholar
  84. Silva, P. C., K. R. Mattox &W. H. Blackwell. 1972. The generic nameHormidium as applied to green algae. Taxon 21: 639–345.CrossRefGoogle Scholar
  85. Sluiman, H. J. 1985. A cladistic evaluation of the lower and higher green plants. Plant Syst. Evol. 149: 217–232.CrossRefGoogle Scholar
  86. Smith, G M. 1938. Cryptogamic botany. Vol. 2. McGraw-Hill, New York & London.Google Scholar
  87. —. 1950. The fresh-water algae of the United States. Ed. 2. McGraw-Hill, New York.Google Scholar
  88. Solomon, E. P., L. R. Berg &D. W. Martin. 2002. Biology. Ed. 6. Brooks/Cole, South Melbourne, Australia.Google Scholar
  89. South, G R. &A. Whittick. 1987. Introduction to phycology. Blackwell Scientific, Oxford.Google Scholar
  90. Sporne, K. R. 1965. The morphology of gymnosperms: The structure and evolution of primitive seed-plants. Hutchinson, London.Google Scholar
  91. Stewart, K. D. &K. R. Mattox. 1975. Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a & b. Bot. Rev. (Lancaster) 41: 104–135.CrossRefGoogle Scholar
  92. Stuessy, T. F. 1990. Plant taxonomy: The systematic evaluation of comparative data. Columbia Univ. Press, New York.Google Scholar
  93. Syrett, P. J. &F. A. A. Al-Houty. 1984. The phylogenetic significance of the occurrence of urease/urea amidolyase and glycolate oxidase/glycolate dehydrogenase in green algae. Brit. Phycol. J. 19: 11–21.CrossRefGoogle Scholar
  94. Taylor, T. N. &E. L. Taylor. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  95. Theriot, E. 1988. A review of Sluiman’s cladistic classification of green plants with particular reference to flagella data and to land plant origins. Taxon 37: 913–919.CrossRefGoogle Scholar
  96. Tippo, O. &W. L. Stern. 1977. Humanistic botany. W. W. Norton, New York.Google Scholar
  97. Vanden Hoek, C., D. G. Mann &H. M. Jahns. 1995. Algae: An introduction to phycology. Cambridge Univ. Press, Cambridge.Google Scholar
  98. Wardlaw, C. W. 1952. Phylogeny and morphogenesis: Contemporary aspects of botanical science. Macmillan, London.Google Scholar
  99. —. 1955. Embryogenesis in plants. Methuen, London.Google Scholar
  100. —. 1968. Essays on form in plants. Manchester Univ. Press, Manchester.Google Scholar
  101. Wolfe, S. L. 1983. Introduction to cell biology. Wadsworth, Belmont, CA.Google Scholar
  102. Zimmerman, W. 1930. Phylogenie der Pflanzen. G. Fischer, Jena, Germany.Google Scholar
  103. —. 1952. Main results of the telome theory. Palaeobotanist 1: 456–470.Google Scholar

Copyright information

© The New York Botanical Garden 2003

Authors and Affiliations

  • Will H. Blackwell
    • 1
  1. 1.Department of Biological SciencesUniversity of Alabama TuscaloosaAlabamaUSA

Personalised recommendations