Skip to main content
Log in

Two theories of origin of the land-plant sporophyte: Which is left standing?

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Questions concerning the two competing theories of the development of alternating generations in land plants, the homologous theory and the antithetic theory, have never been fully resolved. In the majority of recent accounts there appears to have been increasing de facto support (if one considers the ontogenetic processes and phylogenetic consequences discussed) for the antithetic theory. However, this preference is usually not plainly stated (as such) in these discussions, and some support has also continued for the homologous theory. The crux of both theories (homologous and antithetic) centers upon how the sporophyte may have originated in the life cycle. One problem with the homologous theory is that it is not made explicit how the development of a dependent sporophyte could have occurred in the life cycle (when the precedent organisms are considered to have had free-living, putatively similar, gametophytes and sporophytes). The antithetic theory, by contrast, offers a definite ontogenetic mechanism or process (retention of the zygote on the gametophyte, delay of zygotic meiosis, with zygotic mitoses occurring first) by which a dependent sporophyte might have originated and persisted, in the context of a life cycle formerly lacking a sporophyte generation. Also, a review of a variety of evidence (morphological, cytological, biochemical, etc.) would appear to lend more support to the antithetic theory than to the homologous theory. In discussing types of algae now known to be most clearly related to land plants (i.e., charophytes, particularly advanced forms), the type of life cycle exhibited by these particular algae (haplontic, with zygotic meiosis; no sporophyte present) suggests that only an antithetic origin of the sporophyte in land plants is actually feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Al-Houty, F. A. A. &P. J. Syrett. 1984. The occurrence of urease/urea amidolyase and glycolate oxidase/ dehydrogenase inKlebsormidium spp. and members of the Ulotrichales. Brit. Phycol. J. 19: 1–10.

    Article  Google Scholar 

  • Arber, A. R. 1950. The natural philosophy of plant form. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Beech, P. L., K. Heimann &M. Melkonian. 1991. Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164: 23–37.

    Article  Google Scholar 

  • Blackwell, W. H. &M. J. Powell. 1995. Where have all the algae gone, or, how many kingdoms are there? Amer. Biol. Teacher 57: 160–167.

    Google Scholar 

  • —. 1999. Reconciling kingdoms with codes of nomenclature: Is it necessary? Syst. Biol. 48: 406–412.

    Article  PubMed  CAS  Google Scholar 

  • —. 2000. A review of group fililation of stramenopiles, additional approaches to the question. Evol. Theory & Rev. 12(3): 49–88.

    Google Scholar 

  • Bold, H. C. 1948. The occurrence of chlorophyll in the sporophyte ofRicciocarpus natans. Amer. J. Bot. 35: 440–443.

    Article  CAS  Google Scholar 

  • —. 1957. Morphology of plants. Harper & Brothers, New York.

    Google Scholar 

  • — &M. J. Wynne. 1978. Introduction to the algae: Structure and reproduction. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • ——. 1985. Introduction to the algae: Structure and reproduction. Ed. 2. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • —,C. J. Alexopoulos &T. Delevoryas. 1980. Morphology of plants and fungi. Ed. 4. Harper & Row, New York.

    Google Scholar 

  • ———. 1987. Morphology of plants and fungi. Ed. 5. Harper & Row, New York.

    Google Scholar 

  • Bower, F. O. 1908. The origin of a land flora. Macmillan, London.

    Google Scholar 

  • —. 1935. Primitive land plants. Macmillan, London.

    Google Scholar 

  • Bremer, K. 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369–385.

    Google Scholar 

  • —. 1986. Systematics of the green algae (Irvine, D.E.G. & John, D.M. (Eds.), a review. Cladistics 2: 378–381.

    Article  Google Scholar 

  • — &H. E. Wanntorp. 1981a. A cladistic classification of green plants. Nord. J. Bot. 1: 1–3.

    Article  Google Scholar 

  • ——. 1981b. The cladistic approach to plant classification. Pp. 87–94in V. Funk & D. R. Brooks (eds.), Advances in cladistics: Proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, Bronx.

    Google Scholar 

  • —,C. J. Humphries, B. D. Mishler &S. P. Churchill. 1987. On cladistic relationships in green plants. Taxon 36: 339–349.

    Article  Google Scholar 

  • Brown, W. H. 1935. The plant kingdom: A textbook of general botany. Ginn & Company, Boston.

    Google Scholar 

  • Burns, G W. 1974. The plant kingdom. Macmillan, New York.

    Google Scholar 

  • Campbell, D. H. 1940. The evolution of land plants (Embryophyta). Stanford Univ. Press, Palo Alto, CA.

    Google Scholar 

  • Campbell, N. A., J. B. Reece &L. G. Mitchell. 1999. Biology. Ed. 5. Benjamin Cummings, CA.

    Google Scholar 

  • Cavalier-Smith, T. 1981. Eukaryote kingdoms, seven or nine? BioSystems 14: 461–481.

    Article  PubMed  CAS  Google Scholar 

  • Church, A. H. 1919. Thalassiophyta and the subaerial transmigration. Botanical Memoirs, 3. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Croft, A. 1952. A newTrochiliscus (Charophyta) from the Downtownian of Podolia. Bull. Brit. Mus. (Nat. Hist), Geol. 1: 187–220.

    Google Scholar 

  • Cronquist, A. 1961. Introductory botany. Harper & Row, New York.

    Google Scholar 

  • Delevoryas, T. 1977. Plant diversification. Ed. 2. Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Ditmer, H. J. 1964. Phylogeny and form in the plant kingdom. Van Nostrand, Toronto.

    Google Scholar 

  • Dodge, J. D. 1973. The fine structure of algal cells. Academic Press, London.

    Google Scholar 

  • Eames, A. J. 1936. Morphology of vascular plants: Lower groups (Psilophytales to Filicales). McGraw-Hill, New York.

    Google Scholar 

  • Foster, A. S. &E. M. Gifford. 1959. Comparative morphology of vascular plants. W. H. Freeman, San Francisco.

    Google Scholar 

  • Frederick, S. E., P. J. Gruber &N. E. Tolbert. 1973. The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants: An evolutionary survey. Pl Physiol. (Lancaster) 52: 318–323.

    CAS  Google Scholar 

  • Fritsch, F. E. 1916. The algal ancestry of higher plants. New Phytol. 15: 233–250.

    Article  Google Scholar 

  • —. 1935. The structure and reproduction of the algae. Vol. 1. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Gifford, E. M. &A. S. Foster. 1989. Morphology and evolution of vascular plants. Ed. 3. W. H. Freeman, New York.

    Google Scholar 

  • Goebel, K. 1930. Organographie der Pflanzen. Ed. 3. G. Fischer, Jena, Germany.

    Google Scholar 

  • Graham, L. E. 1982. The occurrence, evolution, and phylogenetic significance of parenchyma inColeochaete Breb. (Chlorophyta). Amer. J. Bot. 69: 447–454.

    Article  Google Scholar 

  • —. 1984.Coleochaete and the origin of land plants. Amer. J. Bot. 71: 603–608.

    Article  Google Scholar 

  • —. 1985. The origin of the life cycle of land plants. Amer. Scientist 73: 178–186.

    Google Scholar 

  • —. 1993. Origin of land plants. Wiley & Sons, New York.

    Google Scholar 

  • — &L. W. Wilcox. 1983. The occurrence and phylogenetic significance of putative placental transfer cells in the green algaColeochaete. Amer. J. Bot. 70, 113–120.

    Article  Google Scholar 

  • ——. 2000. Algae. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Gray, J. 1985. The microfossil record of early land plants: Advances in understanding of early terrestrialization. Pp. 167–195in W. G. Chaloner & J. D. Lawson (eds.), Evolution and environment in the late Silurian and early Devonian. Phil. Trans. Roy. Soc. London, B, 309.

  • Green, P. B. 1962. Cell expansion. Pp. 625–632in R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York & London.

    Google Scholar 

  • Groover, R. D. &H. C. Bold. 1969. The taxonomy and comparative physiology of the Chlorosarcinales, and certain other edaphic algae. Phycological Studies, 8. Univ. of Texas, Austin.

    Google Scholar 

  • Haberlandt, G. 1914. Physiological plant anatomy. M. Drummond, trans. Macmillan, London.

    Google Scholar 

  • Haupt, A. W. 1953. Plant morphology. McGraw-Hill, New York.

    Google Scholar 

  • Hofmeister, W. 1851. Vergleichende Untersuchgungen. Friedrich Hofmeister, Leipzig, Germany.

    Google Scholar 

  • Jeffrey, C. 1962. The origin and differentiation of the archegoniate land-plants. Bot. Not. 115: 446–454.

    Google Scholar 

  • Kaplan, D. R. 2001. The science of plant morphology: Definition, history, and role in modern biology. Amer. J. Bot. 88: 1711–1741.

    Article  Google Scholar 

  • Karol, K. G., R. M. McCourt, M. T. Cimino &C. F. Delwiche. 2001. The closest living relatives of land plants. Science 294: 2351–2353.

    Article  PubMed  CAS  Google Scholar 

  • Katana, A., J. Kwiatowski, K. Spalik &B. Zakrys. 2001. Phylogenetic position ofKoliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J. Phycol. 37: 443–451.

    Article  CAS  Google Scholar 

  • Kranz, H. D., D. Miks, M. L. Siegler, I. Capesius, C. W. Sensen &V. A. R. Huss. 1995. The origin of land plants: Phylogenetic relationship among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA sequences. J. Molec. Evol. 41: 74–84.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. E. 1999. Phycology. Ed. 3. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Mandai, D. K. &S. Ray. 2001. Karyotype analysis and cytotaxonomic study in the genusNitella (Charophyceae). Phytomorphology 51: 27–32.

    Google Scholar 

  • Manhart, J. R. &J. D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345: 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Marchant, H. J. &J. D. Pickett-Heaps. 1973. Mitosis and cytokinesis inColeochaete scutata. J. Phycol. 9: 461–471.

    Google Scholar 

  • Mattox, K. R. &K. D. Stewart. 1984. Classification of the green algae: A concept based on comparative cytology. Pp. 29–72in D. E. G. Irvine & D. M. John (eds.), Systematics of the green algae. Academic Press, London & Orlando.

    Google Scholar 

  • McCourt, R. M. 1995. Green algal phylogeny. Trends Ecol. Evol. 10: 159–163.

    Article  Google Scholar 

  • Melkonian, M. 1982. Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 31: 255–265.

    Article  Google Scholar 

  • Minkoff, E. C. 1983. Evolutionary biology. Addison Wesley, Reading, MA.

    Google Scholar 

  • Mishler, B. D. &S. P. Churchill. 1984. A cladistic approach to the phylogeny of the “bryophytes.” Brittonia 36: 406–424.

    Article  Google Scholar 

  • ——. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305–328.

    Google Scholar 

  • Nakayama, T., B. Marin, H. D. Kranz, B. Surek, I. Inouye &M. Melkonian. 1998. The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclearencoded SSU rRNA sequences. Protist 149: 367–380.

    Google Scholar 

  • Niklas, K. J. 1992. Plant biomechanics: An engineering approach to plant form and function. Univ. of Chicago Press, Chicago & London.

    Google Scholar 

  • —. 1994. Plant allometry: The scaling of form and process. Univ. of Chicago Press, Chicago & London.

    Google Scholar 

  • —. 1997. The evolutionary biology of plants. Univ. of Chicago Press, Chicago & London.

    Google Scholar 

  • Okuda, K. &R. M. Brown Jr. 1992. A new putative cellulose-synthesizing complex ofColeochaete scutata. Protoplasma 168: 51–63.

    Article  CAS  Google Scholar 

  • Pickett-Heaps, J. D. 1975. Green algae: Structure, reproduction and evolution in selected genera. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • —. 1976. Cell division in eukaryotic algae. BioScience 26: 445–450.

    Article  Google Scholar 

  • Prescott, G W. 1968. The algae: A review. Houghton-Mifflin, Boston.

    Google Scholar 

  • Pringsheim, N. 1878. Ueber Sprossung der Moosfruchte und den Generationswechsel der Thallophyten. Jahrb. Wiss. Bot. 11: 1–46.

    Google Scholar 

  • Pritchard, H. N. &P. T. Bradt. 1984. Biology of nonvascular plants. Times Mirror/Mosby, Saint Louis.

    Google Scholar 

  • Purves, W. K., G H. Orians, H. C. Heller &D. Savada. 1998. Life: The science of biology. Ed. 5. Sinauer, Sunderland, MA.

    Google Scholar 

  • Remy, W. &H. Hass. 1986. Das Ur—Landpflanzen-Konzept—unter besonderer Berucksichtigung der Organization Altdevonisher Gametophyten. Argum. Palaeobot. 7: 173–214.

    Google Scholar 

  • — &R. Remy. 1980. Devonian gametophytes with anatomically preserved gametangia. Science 208: 295–296.

    Article  PubMed  Google Scholar 

  • Renzaglia, K. S. &K. C. Vaughn. 2000. Anatomy, development and classification of hornworts. Pp. 1–20in A. H. Shaw & B. Goffinet (eds.), Bryophyte biology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ruse, M. 1988. Philosophy of biology today. State Univ. Press of New York, Albany.

    Google Scholar 

  • Sattler, R. 1986. Biophilosophy: Analytic and holistic perspectives. Springer-Verlag, Berlin.

    Google Scholar 

  • —. 1998. On the origin of symmetry, branching and phyllotaxis in land plants. Pp. 775–793in R. V. Jean & D. Barabe (eds.), Symmetry in plants. World Scientific, Singapore.

    Google Scholar 

  • Scagel, R. F., R. J. Bandoni, J. R. Maze, G E. Rouse, W. B. Schofield &J. R. Stein. 1984. Plants: An evolutionary survey. Wadsworth, Belmont, CA.

    Google Scholar 

  • Schofield, W. B. 1985. Introduction to bryology. Macmillan, New York.

    Google Scholar 

  • Silva, P. C., K. R. Mattox &W. H. Blackwell. 1972. The generic nameHormidium as applied to green algae. Taxon 21: 639–345.

    Article  Google Scholar 

  • Sluiman, H. J. 1985. A cladistic evaluation of the lower and higher green plants. Plant Syst. Evol. 149: 217–232.

    Article  Google Scholar 

  • Smith, G M. 1938. Cryptogamic botany. Vol. 2. McGraw-Hill, New York & London.

    Google Scholar 

  • —. 1950. The fresh-water algae of the United States. Ed. 2. McGraw-Hill, New York.

    Google Scholar 

  • Solomon, E. P., L. R. Berg &D. W. Martin. 2002. Biology. Ed. 6. Brooks/Cole, South Melbourne, Australia.

    Google Scholar 

  • South, G R. &A. Whittick. 1987. Introduction to phycology. Blackwell Scientific, Oxford.

    Google Scholar 

  • Sporne, K. R. 1965. The morphology of gymnosperms: The structure and evolution of primitive seed-plants. Hutchinson, London.

    Google Scholar 

  • Stewart, K. D. &K. R. Mattox. 1975. Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a & b. Bot. Rev. (Lancaster) 41: 104–135.

    Article  Google Scholar 

  • Stuessy, T. F. 1990. Plant taxonomy: The systematic evaluation of comparative data. Columbia Univ. Press, New York.

    Google Scholar 

  • Syrett, P. J. &F. A. A. Al-Houty. 1984. The phylogenetic significance of the occurrence of urease/urea amidolyase and glycolate oxidase/glycolate dehydrogenase in green algae. Brit. Phycol. J. 19: 11–21.

    Article  Google Scholar 

  • Taylor, T. N. &E. L. Taylor. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Theriot, E. 1988. A review of Sluiman’s cladistic classification of green plants with particular reference to flagella data and to land plant origins. Taxon 37: 913–919.

    Article  Google Scholar 

  • Tippo, O. &W. L. Stern. 1977. Humanistic botany. W. W. Norton, New York.

    Google Scholar 

  • Vanden Hoek, C., D. G. Mann &H. M. Jahns. 1995. Algae: An introduction to phycology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Wardlaw, C. W. 1952. Phylogeny and morphogenesis: Contemporary aspects of botanical science. Macmillan, London.

    Google Scholar 

  • —. 1955. Embryogenesis in plants. Methuen, London.

    Google Scholar 

  • —. 1968. Essays on form in plants. Manchester Univ. Press, Manchester.

    Google Scholar 

  • Wolfe, S. L. 1983. Introduction to cell biology. Wadsworth, Belmont, CA.

    Google Scholar 

  • Zimmerman, W. 1930. Phylogenie der Pflanzen. G. Fischer, Jena, Germany.

    Google Scholar 

  • —. 1952. Main results of the telome theory. Palaeobotanist 1: 456–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackwell, W.H. Two theories of origin of the land-plant sporophyte: Which is left standing?. Bot. Rev 69, 125–148 (2003). https://doi.org/10.1663/0006-8101(2003)069[0125:TTOOOT]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2003)069[0125:TTOOOT]2.0.CO;2

Keywords

Navigation