Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 7, pp 561–572 | Cite as

A fast classification scheme and its application to face recognition

Article

Abstract

To overcome the high computational complexity in real-time classifier design, we propose a fast classification scheme. A new measure called ‘reconstruction proportion’ is exploited to reflect the discriminant information. A novel space called the ‘reconstruction space’ is constructed according to the reconstruction proportions. A point in the reconstruction space denotes the case of a sample reconstructed using training samples. This is used to search for an optimal mapping from the conventional sample space to the reconstruction space. When the projection from the sample space to the reconstruction space is obtained, a new sample after mapping to the new discriminant space would be classified quickly according to the reconstruction proportions in the reconstruction space. This projection technique results in a diversion of time-consuming calculations from the classification stage to the training stage. Though training time is prolonged, it is advantageous in that classification problems such as identification can be solved in real time. Experimental results on the ORL, Yale, YaleB, and CMU PIE face databases showed that the proposed fast classification scheme greatly outperforms conventional classifiers in classification accuracy and efficiency.

Key words

Reconstruction proportion Reconstruction space Real-time classification Face recognition 

CLC number

TP39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G., 2007. 2D and 3D face recognition: a survey. Pattern Recogn. Lett., 28(14):1885–1906. [doi:10.1016/j.patrec.2006.12.018]CrossRefGoogle Scholar
  2. Athitsos, V., Alon, J., Sclaroff, S., Kollios, G., 2008. Boostmap: an embedding method for efficient nearest neighbor retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 30(1):89–104. [doi:10.1109/TPAMI.2007.1140]CrossRefGoogle Scholar
  3. Baraniuk, R.G., 2007. Compressive sensing. IEEE Signal Process. Mag., 24(4):118–121. [doi:10.1109/MSP.2007.4286571]CrossRefGoogle Scholar
  4. Bax, E., 2000. Validation of nearest neighbor classifiers. IEEE Trans. Inf. Theory, 46(7):2746–2752. [doi:10.1109/18.887892]MathSciNetMATHCrossRefGoogle Scholar
  5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J., 1997. Eigenfaces vs. Fisher-faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711–720. [doi:10.1109/34.598228]CrossRefGoogle Scholar
  6. Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neur. Comput., 15(6):1373–1396. [doi:10.1162/089976603321780 317]MATHCrossRefGoogle Scholar
  7. Candes, E.J., Wakin, M.B., 2008. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2):21–30. [doi:10.1109/MSP.2007.914731]CrossRefGoogle Scholar
  8. Cevikalp, H., Triggs, B., Polikar, R., 2008. Nearest Hyperdisk Methods for High-Dimensional Classification. Proc. 25th Int. Conf. on Machine Learning, p.120–127. [doi:10.1145/1390156.1390172]CrossRefGoogle Scholar
  9. Chen, C.J., 2010. Development of a Neural Classifier with Genetic Algorithm for Structural Vibration Suppression. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2788–2795. [doi:10.1109/ICMLC.2010.5580789]Google Scholar
  10. Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306. [doi:10.1109/TIT.2006.871582]MathSciNetCrossRefGoogle Scholar
  11. Duda, R., Hart, P., Stork, D., 2001. Pattern Classification (2nd Ed.). John Wiley & Sons, New York.MATHGoogle Scholar
  12. He, X.F., Niyogi, P., 2003. Locality Preserving Projections. Advances in Neural Information Processing System 16.Google Scholar
  13. He, X.F., Cai, D., Yan, S.C., Zhang, H.J., 2005. Neighborhood Preserving Embedding. IEEE Int. Conf. on Computer Vision, p.1208–1213. [doi:10.1109/ICCV.2005.167]Google Scholar
  14. Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D., 2003. Clustering Appearances of Objects under Varying Illumination Conditions. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.11–18. [doi:10.1109/CVPR.2003.1211332]Google Scholar
  15. Jain, A., Chandrasekaran, B., 1982. Dimensionality and Samples Size Considerations in Pattern Recognition Practice. Classification Pattern Recognition and Reduction of Dimensionality p.835–855. [doi:10.1016/S0169-7161(82)02 042-2]CrossRefGoogle Scholar
  16. Jiang, X.D., Mandal, B., Kot, A., 2008. Eigenfeature regularization and extraction in face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 30(3):383–394. [doi:10.1109/TPAMI.2007.70708]CrossRefGoogle Scholar
  17. Keller, J.M., Gray, M.R., Givens, J.A., 1985. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern., 15(4):580–585. [doi:10.1109/TSMC.1985.6313426]CrossRefGoogle Scholar
  18. Li, H.F., Jiang, T., Zhang, K.S., 2006. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neur. Networks, 17(1):157–165. [doi:10.1109/TNN.2005.860852]CrossRefGoogle Scholar
  19. Li, S.Z., Lu, J., 1999. Face recognition using the nearest feature line method. IEEE Trans. Neur. Networks, 10(2):439–443. [doi:10.1109/72.750575]CrossRefGoogle Scholar
  20. Liu, Y.G., Sam, S.Z., Li, C.G., You, Z.S., 2011. K-NS: a classifier by the distance to the nearest subspace. IEEE Trans. Neur. Networks, 22(8):1256–1268. [doi:10.1109/TNN.2011.2153210]CrossRefGoogle Scholar
  21. Meo, R., Bachar, D., Ienco, D., 2012. LODE: a distance-based classifier built on ensembles of positive and negative observations. Pattern Recogn., 45(4):1409–1425. [doi:10.1016/j.patcog.2011.10.015]CrossRefGoogle Scholar
  22. Mullin, M., Sukthankar, R., 2000. Complete Cross-Validation for Nearest Neighbor Classifiers. Proc. Int. Conf. on Machine Learning, p.639–646.Google Scholar
  23. Psaltis, D., Snapp, R., Venkatesh, S., 1994. On the finite sample performance of the nearest neighbor classifier. IEEE Trans. Inf. Theory, 40(3):820–837. [doi:10.1109/18.335 893]MATHCrossRefGoogle Scholar
  24. Qiao, L.S., Chen, S.C., Tan, X.Y., 2010. Sparsity preserving projections with applications to face recognition. Pattern Recogn., 43(1):331–341. [doi:10.1016/j.patcog.2009.05.005]MATHCrossRefGoogle Scholar
  25. Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323–2326. [doi:10.1126/science.290.5500.2323]CrossRefGoogle Scholar
  26. Singh, C., Walia, E., Mittal, N., 2012. Robust two-stage face recognition approach using global and local features. Vis. Comput., 28(11):1085–1098. [doi:10.1007/s00371-011-06 59-7]CrossRefGoogle Scholar
  27. Stefan, A., Athitsos, V., Yuan, Q., Sclaroff, S., 2009. Reducing Jointboost-Based Multiclass Classification to Proximity Search. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.589–596. [doi:10.1109/CVPR.2009.5206 687]Google Scholar
  28. Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 29(5500):2319–2323. [doi:10.1126/science.290.5500.2319]CrossRefGoogle Scholar
  29. Turk, M., Pentland, A., 1991. Eigenface for recognition. J. Cogn. Neurosci., 3(1):71–86. [doi:10.1162/jocn.1991.3.1.71]CrossRefGoogle Scholar
  30. Vincent, P., Bengio, Y., 2002. K-Local Hperplane and Convex Distance Nearest Neighbor Algorithms. Advances in Neural Information Processing Systems, p.985–992.Google Scholar
  31. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y., 2009. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell., 31(2):210–227. [doi:10.1109/TPAMI.2008.79]CrossRefGoogle Scholar
  32. Zhang, B., Srihari, S.N., 2004. Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell., 26(4):525–528. [doi:10.1109/TPAMI.2004.1265868]CrossRefGoogle Scholar
  33. Zhang, D.Q., Chen, S.C., Zhou, Z.H., 2006. Learning the kernel parameters in kernel minimum distance classifier. Pattern Recogn., 39(1):133–135. [doi:10.1016/j.patcog.2005.08.001]MATHCrossRefGoogle Scholar
  34. Zhang, P., Zhu, X.Q., Tan, J.L., Guo, L., 2010. Classifier and Cluster Ensembles for Mining Concept Drifting Data Streams. Proc. IEEE Int. Conf. on Data Mining, p.1175–1180. [doi:10.1109/ICDM.2010.125]Google Scholar
  35. Zhang, X.Z., Gao, Y.S., 2009. Face recognition across pose: a review. Pattern Recogn., 42(11):2876–2896. [doi:10.1016/j.patcog.2009.04.017]CrossRefGoogle Scholar
  36. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J., 2003. Face recognition: a literature survey. ACM Comput. Surv., 35(4):399–458. [doi:10.1145/954339.954342]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina

Personalised recommendations