Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 12, pp 1147–1153 | Cite as

Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data

Article

Abstract

Self-similarity or scale-invariance is a fascinating characteristic found in various signals including electroencephalogram (EEG) signals. A common measure used for characterizing self-similarity or scale-invariance is the spectral exponent. In this study, a computational method for estimating the spectral exponent based on wavelet transform was examined. A series of Daubechies wavelet bases with various numbers of vanishing moments were applied to analyze the self-similar characteristics of intracranial EEG data corresponding to different pathological states of the brain, i.e., ictal and interictal states, in patients with epilepsy. The computational results show that the spectral exponents of intracranial EEG signals obtained during epileptic seizure activity tend to be higher than those obtained during non-seizure periods. This suggests that the intracranial EEG signals obtained during epileptic seizure activity tend to be more self-similar than those obtained during non-seizure periods. The computational results obtained using the wavelet-based approach were validated by comparison with results obtained using the power spectrum method.

Key words

Self-similarity Power-law behavior Wavelet analysis Electroencephalogram Epilepsy Seizure 

CLC number

TN911.7 R318 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abry, P., Goncalves, P., Flandrin, P., 1993. Wavelet-based spectral analysis of 1/f processes. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.237–240. [doi:10.1109/ICASSP.1993.319479]CrossRefGoogle Scholar
  2. Andrzejak, R.G., Lehnertz, K., Mormann, F., et al., 2001. Indications of nonlinear deterministic and finitedimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E, 64:061907.1–061907.8. [doi:10.1103/PhysRevE.64.061907]CrossRefGoogle Scholar
  3. Goldberger, A.L., 2006. Complex systems. Proc. Am. Thorac. Soc., 3:467–471. [doi:10.1513/pats.200603-028MS]CrossRefGoogle Scholar
  4. Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., et al., 2002. Fractal dynamics in physiology: alterations with disease and aging. PNAS, 99(suppl 1):2466–2472. [doi:10.1073/pnas.012579499]CrossRefGoogle Scholar
  5. Janjarasjitt, S., 2014. Computational validation of fractal characterization by using the wavelet-based fractal analysis. J. Korean Phys. Soc., 64(6):780–785. [doi:10.3938/jkps.64.780]CrossRefGoogle Scholar
  6. Janjarasjitt, S., Loparo, K.A., 2009. Wavelet-based fractal analysis of the epileptic EEG signal. Int. Symp. on Intelligent Signal Processing and Communication Systems, p.127–130. [doi:10.1109/ISPACS.2009.5383886]Google Scholar
  7. Janjarasjitt, S., Loparo, K.A., 2010. Wavelet-based fractal analysis of multi-channel epileptic ECoG. IEEE Region 10 Conf. TENCON, p.373–378. [doi:10.1109/TENCON.2010.5686662]Google Scholar
  8. Janjarasjitt, S., Loparo, K.A., 2013. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG. J. Korean Phys. Soc., 63(8):1659–1665. [doi:10.3938/jkps.63.1659]CrossRefGoogle Scholar
  9. Janjarasjitt, S., Loparo, K.A., 2014a. Examination of scaleinvariant characteristics of epileptic electroencephalograms using wavelet-based analysis. Comput. Electr. Eng., 40(5):1766–1773. [doi:10.1016/j.compeleceng.2014.04.005]CrossRefGoogle Scholar
  10. Janjarasjitt, S., Loparo, K.A., 2014b. Scale-invariant behavior of epileptic ECoG. J. Med. Biol. Eng., in press. [doi:10.5405/jmbe.1433]Google Scholar
  11. Joshi, V., Pachori, R.B., Vijesh, A., 2014. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Contr., 9:1–5. [doi:10.1016/j.bspc.2013.08.006]CrossRefGoogle Scholar
  12. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., et al., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A, 316(1-4):87–114. [doi:10.1016/S0378-4371(02)01383-3]CrossRefMATHGoogle Scholar
  13. Lopes, R., Betrouni, N., 2009. Fractal and multifractal analysis: a review. Med. Image Anal., 13(4):634–649. [doi:10.1016/j.media.2009.05.003]CrossRefGoogle Scholar
  14. Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco, USA.MATHGoogle Scholar
  15. Mandelbrot, B.B., van Ness, J.W., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10(4):422–437. [doi:10.1137/1010093]CrossRefMathSciNetMATHGoogle Scholar
  16. Pachori, R.B., 2008. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process., 2008:293056.1–293056.5. [doi:10.1155/2008/293056]Google Scholar
  17. Pachori, R.B., Patidar, S., 2014. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Method. Progr. Biomed., 113(2):494–502. [doi:10.1016/j.cmpb.2013.11.014]CrossRefGoogle Scholar
  18. Timashev, S.F., Polyakov, Y.S., 2007. Review of flicker noise spectroscopy in electrochemistry. Fluct. Noise Lett., 7(2):R15–R47. [doi:10.1142/S0219477507003829]CrossRefGoogle Scholar
  19. Timashev, S.F., Polyakov, Y.S., Yulmetyev, R.M., et al., 2009. Analysis of biomedical signals by flicker-noise spectroscopy: identification of photosensitive epilepsy using magnetoencephalograms. Laser Phys., 19(4):836–854. [doi:10.1134/S1054660X09040434]CrossRefGoogle Scholar
  20. Timashev, S.F., Polyakov, Y.S., Misurkin, P.I., et al., 2010. Anomalous diffusion as a stochastic component in the dynamics of complex processes. Phys. Rev. E, 81:041128.1–041128.17. [doi:10.1103/PhysRevE.81.041128]CrossRefGoogle Scholar
  21. Timashev, S.F., Panischev, O.Y., Polyakov, Y.S., et al., 2012. Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia. Phys. A, 391(4):1179–1194. [doi:10.1016/j.physa.2011.09.032]CrossRefGoogle Scholar
  22. Watters, P.A., 1998. Fractal Structure in the Electroencephalogram. Available from http://www.complexity.org.au/ci/vol05/watters/watters.html Google Scholar
  23. Wornell, G.W., 1991. Synthesis, Analysis, and Processing of Fractal Signals. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA.Google Scholar
  24. Wornell, G.W., 1993. Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE, 81(10):1428–1450. [doi:10.1109/5.241506]CrossRefGoogle Scholar
  25. Wornell, G.W., 1995. Signal Processing with Fractals: a Wavelet-Based Approach. Prentice Hall, New Jersey, USA.Google Scholar
  26. Wornell, G.W., Oppenheim, A.V., 1992. Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process., 40(3):611–623. [doi:10.1109/78.120804]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations