Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 9, pp 776–793 | Cite as

Data center network architecture in cloud computing: review, taxonomy, and open research issues

Review

Abstract

The data center network (DCN), which is an important component of data centers, consists of a large number of hosted servers and switches connected with high speed communication links. A DCN enables the deployment of resources centralization and on-demand access of the information and services of data centers to users. In recent years, the scale of the DCN has constantly increased with the widespread use of cloud-based services and the unprecedented amount of data delivery in/between data centers, whereas the traditional DCN architecture lacks aggregate bandwidth, scalability, and cost effectiveness for coping with the increasing demands of tenants in accessing the services of cloud data centers. Therefore, the design of a novel DCN architecture with the features of scalability, low cost, robustness, and energy conservation is required. This paper reviews the recent research findings and technologies of DCN architectures to identify the issues in the existing DCN architectures for cloud computing. We develop a taxonomy for the classification of the current DCN architectures, and also qualitatively analyze the traditional and contemporary DCN architectures. Moreover, the DCN architectures are compared on the basis of the significant characteristics, such as bandwidth, fault tolerance, scalability, overhead, and deployment cost. Finally, we put forward open research issues in the deployment of scalable, low-cost, robust, and energy-efficient DCN architecture, for data centers in computational clouds.

Key words

Data center network Cloud computing Architecture Network topology 

CLC number

TP393 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Libdeh, H., Costa, P., Rowstron, A., et al., 2010. Symbiotic routing in future data centers. ACM SIGCOMM Comput. Commun. Rev., 40(4):51–62. [doi:10.1145/1851275.1851191]CrossRefGoogle Scholar
  2. Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev., 38(4):63–74. [doi:10.1145/1402946.1402967]CrossRefGoogle Scholar
  3. Alon, N., Roichman, Y., 1994. Random Cayley graphs and expanders. Random Struct. Algor., 5(2):271–284. [doi:10.1002/rsa.3240050203]MathSciNetCrossRefMATHGoogle Scholar
  4. Armbrust, M., Fox, A., Griffith, R., et al., 2010. A view of cloud computing. Commun. ACM, 53(4):50–58. [doi:10.1145/1721654.1721672]CrossRefGoogle Scholar
  5. Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509–512. [doi:10.1126/science.286.5439.509]MathSciNetCrossRefGoogle Scholar
  6. Beimborn, D., Miletzki, T., Wenzel, S., 2011. Platform as a service (PaaS). Bus. Inform. Syst. Eng., 3(6):381–384. [doi:10.1007/s12599-011-0183-3]CrossRefGoogle Scholar
  7. Beloglazov, A., Buyya, R., 2010. Energy efficient resource management in virtualized cloud data centers. Proc. 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Computing, p.826–831.Google Scholar
  8. Bhardwaj, S., Jain, L., Jain, S., 2010. Cloud computing: a study of infrastructure as a service (IaaS). Int. J. Eng. Inform. Technol., 2(1):60–63.Google Scholar
  9. Bilal, K., Khan, S.U., Kolodziej, J., et al., 2012. A comparative study of data center network architectures. 26th European Conf. on Modelling and Simulation, p.526–532. [doi:10.7148/2012-0526-0532]Google Scholar
  10. Bilal, K., Khan, S.U., Zhang, L., et al., 2013a. Quantitative comparisons of the state-of-the-art data center architectures. Concurr. Comput. Pract. Exp., 25(12):1771–1783. [doi:10.1002/cpe.2963]CrossRefGoogle Scholar
  11. Bilal, K., Manzano, M., Khan, S.U., et al., 2013b. On the characterization of the structural robustness of data center networks. IEEE Trans. Cloud Comput., 1(1):64–77.CrossRefGoogle Scholar
  12. Borthakur, D., 2007. The Hadoop Distributed File System: Architecture and Design. Available from http://svn.eu.apache.org [Accessed on Jan. 13, 2014].Google Scholar
  13. Boru, D., Kliazovich, D., Granelli, F., et al., 2013. Energyefficient data replication in cloud computing datacenters. IEEE Globecom Int. Workshop on Cloud Computing Systems, Networks, and Applications, p.446–451.Google Scholar
  14. Buxmann, P., Hess, T., Lehmann, S., 2008. Software as a service. Wirtschaftsinformatik, 50(6):500–503. [doi:10.1007/s11576-008-0095-0]CrossRefGoogle Scholar
  15. Buyya, R., Yeo, C.S., Venugopal, S., 2008. Market-oriented cloud computing: vision, hype, and reality for delivering IT services as computing utilities. 10th IEEE Int. Conf. on High Performance Computing and Communications, p.5–13.Google Scholar
  16. Chang, F., Dean, J., Ghemawat, S., et al., 2008. Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):1–26. [doi:10.1145/1365815.1365816]CrossRefMATHGoogle Scholar
  17. Chen, K., Singla, A., Singh, A., et al., 2012a. OSA: an optical switching architecture for data center networks with unprecedented flexibility. Proc. 9th USENIX Conf. on Networked Systems Design and Implementation.Google Scholar
  18. Chen, Y., Griffith, R., Liu, J., et al., 2009. Understanding TCP incast throughput collapse in datacenter networks. Proc. 1st ACM Workshop on Research on Enterprise Networking, p.73–82. [doi:10.1145/1592681.1592693]CrossRefGoogle Scholar
  19. Chen, Y., Alspaugh, S., Borthakur, D., et al., 2012. Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. Proc. 7th ACM European Conf. on Computer Systems, p.43–56. [doi:10.1145/2168836.2168842]Google Scholar
  20. Cisco Data Center, 2007. Infrastructure 2.5 Design Guide.Google Scholar
  21. Clos, C., 1953. A study of non-blocking switching networks. Bell Syst. Techn. J., 32(2):406–424. [doi:10.1002/j.1538-7305.1953.tb01433.x]CrossRefGoogle Scholar
  22. Cui, Y., Wang, H., Cheng, X., et al., 2011. Wireless data center networking. IEEE Wirel. Commun., 18(6):46–53. [doi:10.1109/MWC.2011.6108333]CrossRefGoogle Scholar
  23. Dally, W.J., Towles, B., 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann, San Francisco, CA, USA.Google Scholar
  24. Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113. [doi:10.1145/1327452.1327492]CrossRefGoogle Scholar
  25. Ding, Z., Guo, D., Liu, X., et al., 2012. A MapReducesupported network structure for data centers. Concurr. Comput. Pract. Exp., 24(12):1271–1295. [doi:10.1002/cpe.1791]CrossRefGoogle Scholar
  26. Droms, R., 1997. Dynamic Host Configuration Protocol. RFC Editor, United States.Google Scholar
  27. Farrington, N., Porter, G., Radhakrishnan, S., et al., 2011. Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev., 41(4):339–350.Google Scholar
  28. Formu, J., 2009. Cloud Cube Model: Selecting Cloud Formations for Secure Collaboration.Google Scholar
  29. Foster, I., Kesselman, C., Nick, J., et al., 2002. Grid services for distributed system integration. Computer, 35(6):37–46. [doi:10.1109/MC.2002.1009167]CrossRefGoogle Scholar
  30. Frécon, E., Stenius, M., 1998. Dive: a scaleable network architecture for distributed virtual environments. Distr. Syst. Eng., 5(3):91–100. [doi:10.1088/0967-1846/5/3/002]CrossRefGoogle Scholar
  31. Gantz, J., Reinsel, D., 2012. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future.Google Scholar
  32. Ghemawat, S., Gobioff, H., Leung, S.T., 2003. The Google File System. ACM SIGOPS Oper. Syst. Rev., 37(5): 29–43. [doi:10.1145/1165389.945450]CrossRefGoogle Scholar
  33. Greenberg, A., Hamilton, J., Maltz, D.A., et al., 2008a. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev., 39(1):68–73. [doi:10.1145/1496091.1496103]CrossRefGoogle Scholar
  34. Greenberg, A., Lahiri, P., Maltz, D., et al., 2008b. Towards a next generation data center architecture: scalability and commoditization. Proc. ACM Workshop on Programmable Routers for Extensible Services of Tomorrow, p.57–62. [doi:10.1145/1397718.1397732]CrossRefGoogle Scholar
  35. Greenberg, A., Hamilton, J.R., Jain, N., et al., 2009. Vl2: a scalable and flexible data center network. ACM SIGCOMM Comput. Commun. Rev., 39(4):51–62. [doi:10.1145/1594977.1592576]CrossRefGoogle Scholar
  36. Guo, C., Wu, H., Tan, K., et al., 2008. DCell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Comput. Commun. Rev., 38(4):75–86. [doi:10.1145/1402946.1402968]CrossRefGoogle Scholar
  37. Guo, C., Lu, G., Li, D., et al., 2009. BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev., 39(4):63–74. [doi:10.1145/1594977.1592577]CrossRefGoogle Scholar
  38. Gyarmati, L., Trinh, T., 2010. Scafida: a scale-free network inspired data center architecture. ACM SIGCOMM Comput. Commun. Rev., 40(5):4–12. [doi:10.1145/1880153.1880155]CrossRefGoogle Scholar
  39. Heller, B., Seetharaman, S., Mahadevan, P., et al., 2010. ElasticTree: saving energy in data center networks. Proc. 7th USENIX Conf. on Networked Systems Design and Implementation, p.19–21.Google Scholar
  40. Ikeda, T., Tsutsumi, O., 1995. Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268(5219):1873–1875. [doi:10.1126/science.268.5219.1873]CrossRefGoogle Scholar
  41. Isard, M., Budiu, M., Yu, Y., et al., 2007. Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Operat. Syst. Rev., 41(3):59–72. [doi:10.1145/1272998.1273005]CrossRefGoogle Scholar
  42. Jericho Forum, 2009. Cloud Cube Model: Selecting Cloud Formations for Secure Collaboration.Google Scholar
  43. Kandula, S., Padhye, J., Bahl, P., 2009. Flyways to Decongest Data Center Networks.Google Scholar
  44. Katayama, Y., Takano, K., Kohda, Y., et al., 2011. Wireless data center networking with steered-beam mm wave links. IEEE Wireless Communications and Networking Conf., p.2179–2184.Google Scholar
  45. Lee, Y.C., Zomaya, A.Y., 2012. Energy efficient utilization of resources in cloud computing systems. J. Supercomput., 60(2):268–280. [doi:10.1007/s11227-010-0421-3]MathSciNetCrossRefGoogle Scholar
  46. Li, D., Guo, C., Wu, H., et al., 2009. Ficonn: using backup port for server interconnection in data centers. IEEE INFOCOM, p.2276–2285.Google Scholar
  47. Li, W., Svard, P., 2010. REST-based SOA application in the cloud: a text correction service case study. World Congress on Services, p.84–90.Google Scholar
  48. Lian, F.L., Moyne, J., Tilbury, D., 2002. Network design consideration for distributed control systems. IEEE Trans. Contr. Syst. Technol., 10(2):297–307. [doi:10.1109/87.987076]CrossRefGoogle Scholar
  49. Manzano, M., Bilal, K., Calle, E., et al., 2013. On the connectivity of data center networks. IEEE Commun. Lett., 17(11):2172–2175. [doi:10.1109/LCOMM.2013.091913.131176]CrossRefGoogle Scholar
  50. Niranjan Mysore, R., Pamboris, A., Farrington, N., et al., 2009. Portland: a scalable fault-tolerant layer 2 data center network fabric. ACM SIGCOMM Comput. Commun. Rev., 39(4):39–50. [doi:10.1145/1594977.1592575]CrossRefGoogle Scholar
  51. Popa, L., Ratnasamy, S., Iannaccone, G., et al., 2010. A cost comparison of datacenter network architectures. Proc. 6th Int. Conf. Co-NEXT, Article 16. [doi:10.1145/1921168.1921189]Google Scholar
  52. Ranachandran, K., 2008. 60 GHz Data-Center Networking: Wireless=>Worryless. Technical Report, NEC Laboratories America, Inc. Redkar, T., Guidici, T., 2011. Windows Azure Platform. Apress.Google Scholar
  53. Rimal, B., Choi, E., Lumb, I., 2009. A taxonomy and survey of cloud computing systems. 5th Int. Joint Conf. on INC, IMS and IDC, p.44–51. [doi:10.1109/NCM.2009.218]CrossRefGoogle Scholar
  54. Shin, J.Y., Sirer, E.G., Weatherspoon, H., et al., 2012. On the feasibility of completely wireless datacenters. Proc. 8th ACM/IEEE Symp. on Architectures for Networking and Communications Systems, p.3–14. [doi:10.1145/2396556.2396560]Google Scholar
  55. Singh, A., Korupolu, M., Mohapatra, D., 2008. Serverstorage virtualization: integration and load balancing in data centers. Proc. ACM/IEEE Conf. on Supercomputing, p.53.Google Scholar
  56. Singla, A., Hong, C.Y., Popa, L., et al., 2012. Jellyfish: networking data centers randomly. Proc. 9th USENIX Conf. on Networked Systems Design and Implementation, p.17.Google Scholar
  57. Tarantino, A., 2012. Point-of-view paper: high tech’s innovative approach to sustainability. Int. J. Innov. Sci., 4(1):37–40. [doi:10.1260/1757-2223.4.1.37]MathSciNetCrossRefGoogle Scholar
  58. Tennenhouse, D., Wetherall, D., 2002. Towards an active network architecture. Proc. DARPA Active Networks Conf. and Exposition, p.2–15. [doi:10.1109/DANCE.2002.1003480]CrossRefGoogle Scholar
  59. Tschudi, W., Xu, T., Sartor, D., et al., 2004. Energy Efficient Data Centers. Lawrence Berkeley National Laboratory.CrossRefGoogle Scholar
  60. Tziritas, N., Xu, C.Z., Loukopoulos, T., et al., 2013. Application-aware workload consolidation to minimize both energy consumption and network load in cloud environments. 42nd IEEE Int. Conf. on Parallel Processing, p.449–457.Google Scholar
  61. USEPA, 2012. 2012 Annual Report-US Environmental Protection Agency.Google Scholar
  62. Vahdat, A., Al-Fares, M., Farrington, N., et al., 2010. Scaleout networking in the data center. IEEE Micro, 30(4):29–41. [doi:10.1109/MM.2010.72]CrossRefGoogle Scholar
  63. Valiant, L.G., 1990. A bridging model for parallel computation. Commun. ACM, 33(8):103–111. [doi:10.1145/79173.79181]CrossRefGoogle Scholar
  64. Wang, G., Andersen, D.G., Kaminsky, M., et al., 2010. C-through: part-time optics in data centers. ACM SIGCOMM Comput. Commun. Rev., 40(4):327–338. [doi:10.1145/1851275.1851222]CrossRefGoogle Scholar
  65. Wu, H., Lu, G., Li, D., et al., 2009. MDCube: a high performance network structure for modular data center interconnection. Proc. 5th Int. Conf. on Emerging Networking Experiments and Technologies, p.25–36. [doi:10.1145/1658939.1658943]CrossRefGoogle Scholar
  66. Wu, K., Xiao, J., Ni, L.M., 2012. Rethinking the architecture design of data center networks. Front. Comput. Sci., 6(5):596–603.MathSciNetGoogle Scholar
  67. Zahariev, A., 2009. Google APP Engine. Helsinki University of Technology, Helsinki, Finland.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Han Qi
    • 1
  • Muhammad Shiraz
    • 1
  • Jie-yao Liu
    • 1
  • Abdullah Gani
    • 1
  • Zulkanain Abdul Rahman
    • 2
  • Torki A. Altameem
    • 3
  1. 1.Mobile Cloud Computing Research Lab, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of History, Faculty of Arts and Social SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Computer Science, Riyadh Community CollegeKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations