Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 7, pp 514–524 | Cite as

Procedural generation and real-time rendering of a marine ecosystem

  • Rong Li
  • Xin Ding
  • Jun-hao Yu
  • Tian-yi Gao
  • Wen-ting Zheng
  • Rui Wang
  • Hu-jun Bao
Article

Abstract

Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit (CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units (GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance. Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.

Key words

Procedural generation Marine ecosystem Biological feature Graphic processing unit acceleration 

CLC number

TP391 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryan, T.L., Metaxas, A., 2006. Distribution of deep-water corals along the North American continental margins: relationships with environmental factors. Deep Sea Res. I, 53(12):1865–1879. [doi:10.1016/j.dsr.2006.09.006]CrossRefGoogle Scholar
  2. Carucci, F., Studios, L., 2005. Inside geometry instancing. In: Fernando, R., Pharr, M. (Eds.), GPU Gems 2. Addison-Wesley, Massachusetts.Google Scholar
  3. Castro, P., Huber, M., 2012. Marine Biology. McGraw-Hill Companies, New York.Google Scholar
  4. Deussen, O., Hanrahan, P., Lintermann, B., et al., 1998. Realistic modeling and rendering of plant ecosystems. Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques, p.275–286. [doi:10.1145/280814.280898]Google Scholar
  5. Diener, J., Rodriguez, M., Baboud, L., et al., 2009. Wind projection basis for real-time animation of trees. Comput. Graph. Forum, 28(2):533–540. [doi:10.1111/j.1467-8659.2009.01393.x]CrossRefGoogle Scholar
  6. Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A.K. Peters, Ltd., Natick.CrossRefMATHGoogle Scholar
  7. Jeschke, S., Wimmer, M., Purgathofer, W., 2005. Imagebased representations for accelerated rendering of complex scenes. EUROGRAPHICS, p.1–20.Google Scholar
  8. Jonsson, I.G., 1966. Wave boundary layers and friction factors. Proc. 10th Int. Conf. on Coastal Engineering, p.127–148.Google Scholar
  9. Lanza, S., 2007. Animation and rendering of underwater godrays. In: Engel, W.G. (Eds.), ShaderX5: Advanced Rendering Techniques. Cengage Learning, p.315–327.Google Scholar
  10. Lawrence, J.M., 1987. A Functional Biology of Echinoderms. The Johns Hopkins University Press, Baltimore.Google Scholar
  11. Lindenmayer, A., 1968. Mathematical models for cellular interactions in development: I. Filaments with one-sided inputs. J. Theor. Biol., 18(3):280–299. [doi:10.1016/0022-5193(68)90079-9]CrossRefGoogle Scholar
  12. Lluch, J., Camahort, E., Vivó, R., 2003. Procedural multiresolution for plant and tree rendering. Proc. 2nd Int. Conf. on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, p.31–38. [doi:10.1145/602330.602336]CrossRefGoogle Scholar
  13. Mann, K., Lazier, J., 2005. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Wiley-Blackwell.CrossRefGoogle Scholar
  14. Marvie, J.E., Buron, C., Gautron, P., et al., 2012. GPU shape grammars. Comput. Graph. Forum, 31(7):2087–2095. [doi:10.1111/j.1467-8659.2012.03201.x]CrossRefGoogle Scholar
  15. McDonald, J., 2011. Tessellation on any budget. Game Developers Conf.Google Scholar
  16. Nielsen, P., 1992. Coastal Bottom Boundary Layers and Sediment Transport. World Scientific, Singapore.Google Scholar
  17. Papadopoulos, C., Papaioannou, G., 2009. Realistic realtime underwater caustics and godrays. Proc. 19th Int. Conf. on Computer Graphics and Vision, p.89–95.Google Scholar
  18. Parish, Y.I.H., Müller, P., 2001. Procedural modeling of cities. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.301–308. [doi:10.1145/383259.383292]Google Scholar
  19. Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York. Rsastergrid, 2010. Instance Cloud Reduction reloaded. Available from http://rastergrid.com/blog/2010/06/instance-cloud-reduction-reloaded/.Google Scholar
  20. Sakude, M.T.S., Yano, E.T., Salles, P.S.C.R., 2011. Real time image generation for underwater simulation. Proc. Interservice/Industry Training, Simulation and Education Conf.Google Scholar
  21. Storlazzi, C.D., Field, M.E., Dykes, J.D., et al., 2002. Wave control on reef morphology and coral distribution: Molokai, Hawaii. Ocean Wave Meas. Anal., 1:784–793. [doi:10.1061/40604(273)80]CrossRefGoogle Scholar
  22. Weber, J., Penn, J., 1995. Creation and rendering of realistic trees. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.119–128. [doi:10.1145/218380.218427]Google Scholar
  23. Wloka, M., 2003. “Batch, batch, batch”: what does it really mean? Presentation at Game Developers Conf.Google Scholar
  24. Wonka, P., Aliaga, D., Müller, P., et al., 2011. Modeling 3D urban spaces using procedural and simulation-based techniques. Proc. 38th Annual Conf. on Computer Graphics and Interactive Techniques, Article No. 9. [doi:10.1145/2037636.2037645]Google Scholar
  25. Zioma, R., 2007. GPU-generated procedural wind animations for trees. GPU Gems, 3:231–240.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rong Li
    • 1
  • Xin Ding
    • 1
  • Jun-hao Yu
    • 2
  • Tian-yi Gao
    • 1
  • Wen-ting Zheng
    • 1
  • Rui Wang
    • 1
  • Hu-jun Bao
    • 1
  1. 1.State Key Lab of CAD & CGZhejiang UniversityHangzhouChina
  2. 2.PLA Unit 61741BeijingChina

Personalised recommendations