Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 5, pp 337–350 | Cite as

Cross-layer resource allocation in wireless multi-hop networks with outdated channel state information

  • Wei Feng
  • Sui-li Feng
  • Yue-hua Ding
  • Xin Huang
Article
  • 79 Downloads

Abstract

The cross-layer resource allocation problem in wireless multi-hop networks (WMHNs) has been extensively studied in the past few years. Most of these studies assume that every node has the perfect channel state information (CSI) of other nodes. In practical settings, however, the networks are generally dynamic and CSI usually becomes outdated when it is used, due to the time-variant channel and feedback delay. To deal with this issue, we study the cross-layer resource allocation problem in dynamic WMHNs with outdated CSI under channel conditions where there is correlation between the outdated CSI and current CSI. Two major contributions are made in this work: (1) a closed-form expression of conditional average capacity is derived under the signal-to-interference-plus-noise ratio (SINR) model; (2) a joint optimization problem of congestion control, power control, and channel allocation in the context of outdated CSI is formulated and solved in both centralized and distributed manners. Simulation results show that the network utility can be improved significantly using our proposed algorithm.

Key words

Wireless multi-hop networks Outdated channel state information Cross-layer resource allocation Distributed algorithm 

CLC number

TP393 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, R., Assaad, M., Koksal, C.E., et al., 2011. Joint scheduling and resource allocation in the OFDMA downlink: utility maximization under imperfect channel-state information. IEEE Trans. Signal Process., 59(11):5589–5604. [doi:10.1109/TSP.2011.2162953]CrossRefMathSciNetGoogle Scholar
  2. Ahmad, A., Assaad, M., 2013. Optimal power and subcarriers allocation in downlink OFDMA system with imperfect channel knowledge. Optim. & Eng., 14(3):477–499. [doi:10.1007/s11081-011-9181-z]CrossRefMathSciNetGoogle Scholar
  3. Akyildiz, I.F., Wang, X.D., 2008. Cross-layer design in wireless mesh networks. IEEE Trans. Veh. Technol., 57(2):1061–1076. [doi:10.1109/TVT.2007.911615]CrossRefGoogle Scholar
  4. Augusto, C.H.P., Carvalho, C.B., da Silva, M.W.R., et al., 2011. REUSE: a combined routing and link scheduling mechanism for wireless mesh networks. Comput. Commun., 34(18):2207–2216. [doi:10.1016/j.comcom.2011.01.008]CrossRefGoogle Scholar
  5. Bertsekas, D.P., 1995. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts.MATHGoogle Scholar
  6. Bin, Z., Zhang, Z., Wei, H., et al., 2013. Performance analysis for amplify-and-forward relay selection with outdated channel state information. China Commun., 10(6):100–110. [doi:10.1109/CC.2013.6549263]CrossRefGoogle Scholar
  7. Biyanwilage, S., Gunawardana, U., Liyanapathirana, R., 2011. Power allocation for nonregenerative OFDM relay links with outdated channel knowledge. Proc. of the 11th Int. Symp. on Communications and Information Technologies, p.428–432. [doi:10.1109/ISCIT.2011.6089964]Google Scholar
  8. Boyd, S.P., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge, UK.CrossRefMATHGoogle Scholar
  9. Chen, J.J., Wu, S.L., Lin, W.Y., 2013. A cross-layer design for energy efficient sleep scheduling in uplink transmissions of IEEE 802.16 broadband wireless networks. Adv. Intell. Syst. Appl., 20(1):635–644. [doi:10.1007/978-3-642-35452-6_64]MATHGoogle Scholar
  10. Chiang, M., 2005. Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control. IEEE J. Sel. Areas Commun., 23(1):104–116. [doi:10.1109/JSAC.2004.837347(410)23]CrossRefGoogle Scholar
  11. Chiang, M., Low, S.H., Calderbank, A.R., et al., 2007. Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE, 95(1):255–312. [doi:10.1109/JPROC.2006.887322]CrossRefGoogle Scholar
  12. Cui, H., Song, L., Jiao, B., 2013. Weighted amplify-andforward relay selection with outdated channel state information. IEEE Wirel. Commun. Lett., 2(6):651–654. [doi:10.1109/WCL.2013.091013.130529]CrossRefGoogle Scholar
  13. Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A., 2000. Table of Integral, Series, and Products. Academic Press, San Diego, USA.Google Scholar
  14. Huang, X., Feng, S.L., Zhuang, H.C., 2011. Jointly optimal congestion control, channel allocation and power control in multi-channel wireless multihop networks. Comput. Commun., 34(15):1848–1857. [doi:10.1016/j.comcom.2011.05.004]CrossRefGoogle Scholar
  15. Jain, R., Chiu, D.M., Hawe, W.R., 1984. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems. Technical Report, No. DEC-TR-301, Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA.Google Scholar
  16. Kim, H., Wang, H., Lim, S., et al., 2012. On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments. IEEE Trans. Wirel. Commun., 11(1):284–295. [doi:10.1109/TWC.2011.112311.110307]CrossRefGoogle Scholar
  17. Li, X.C., Cao, F.M., Dong, X.H., et al., 2011. Power control for delay constrained multi-channel communications using outdated CSI. Wirel. Commun. Mob. Comput., 11(9):1302–1311. [doi:10.1002/wcm.928]CrossRefGoogle Scholar
  18. Li, Y., Yin, Q., Xu, W., et al., 2011. On the design of relay selection strategies in regenerative cooperative networks with outdated CSI. IEEE Trans. Wirel. Commun., 10(9):3086–3097. [doi:10.1109/TWC.2011.072511.110077]CrossRefGoogle Scholar
  19. Lim, S., Wang, H., Kim, H., et al., 2012. Mean value-based power allocation without instantaneous CSI feedback in spectrum sharing systems. IEEE Trans. Wirel. Commun., 11(3):874–879. [doi:10.1109/TWC.2012.020712.102197]CrossRefGoogle Scholar
  20. Mo, J., Walrand, J., 2000. Fair end-to-end window-based congestion control. IEEE/ACM Trans. Network., 8(5):556–567. [doi:10.1109/90.879343]CrossRefGoogle Scholar
  21. Nguyen, M.V., Duong, T.Q., Hong, C.S., et al., 2012. Optimal and sub-optimal resource allocation in multi-hop cognitive radio networks with primary user outage constraint. IET Networks, 1(2):47–57. [doi:10.1049/ietnet.2011.0028]CrossRefGoogle Scholar
  22. Papandriopoulos, J., Evans, J.S., 2006. Low-complexity distributed algorithms for spectrum balancing in multiuser DSL networks. Proc. IEEE Int. Conf. on Communications, p.3270–3275. [doi:10.1109/ICC. 2006.255311]Google Scholar
  23. Qu, Q., Milstein, L.B., Vaman, D.R., 2010. Cross-layer distributed joint power control and scheduling for delaycon-strained applications over CDMA-based wireless adhoc networks. IEEE Trans. Commun., 58(2):669–680. [doi:10.1109/TCOMM.2010.02.060069]CrossRefGoogle Scholar
  24. Rad, A.H.M., Wong, V.W.S., 2008. Cross-layer fair bandwidth sharing for multi-channel wireless mesh networks. IEEE Trans. Wirel. Commun., 7(9):3436–3445. [doi:10.1109/TWC.2008.070238]CrossRefGoogle Scholar
  25. Raniwala, A., Chiueh, T., 2005. Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. Proc. 24th Annual Joint Conf. of the IEEE Computer and Communications Societies, p.2223–2234. [doi:10.1109/INFCOM.2005.1498497]Google Scholar
  26. Shi, Y., Hou, Y.T., Kompella, S., et al., 2011. Maximizing capacity in multihop cognitive radio networks under the SINR model. IEEE Trans. Mob. Comput., 10(7):954–967. [doi:10.1109/TMC.2010.204]CrossRefGoogle Scholar
  27. Xu, W., Dong, X.D., 2012. Optimized one-way relaying strategy with outdated CSI quantization for spatial multiplexing. IEEE Trans. Signal Process., 60(8):4458–4464. [doi:10.1109/TSP.2012.2197209]CrossRefMathSciNetGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wei Feng
    • 1
  • Sui-li Feng
    • 1
  • Yue-hua Ding
    • 1
  • Xin Huang
    • 1
    • 2
  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations