Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 3, pp 211–222 | Cite as

Robust synchronization of chaotic systems using slidingmode and feedback control

Article

Abstract

We propose a robust scheme to achieve the synchronization of chaotic systems with modeling mismatches and parametric variations. The proposed algorithm combines high-order sliding mode and feedback control. The sliding mode is used to estimate the synchronization error between the master and the slave as well as its time derivatives, while feedback control is used to drive the slave track the master. The stability of the proposed design is proved theoretically, and its performance is verified by some numerical simulations. Compared with some existing synchronization algorithms, the proposed algorithm shows faster convergence and stronger robustness to system uncertainties.

Key words

Chaos synchronization Sliding mode Feedback control 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besancon, G., 2000. Remarks on nonlinear adaptive observer design. Syst. Contr. Lett., 41(4):271–280. [doi:10. 1016/S0167-6911(00)00065-7]CrossRefMATHMathSciNetGoogle Scholar
  2. Bowong, S., 2004. Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A, 326(1–2):102–113. [doi:10.1016/j.physleta.2004.04.004]CrossRefMATHMathSciNetGoogle Scholar
  3. Chen, M., Kurths, J., 2007. Chaos synchronization and parameter estimation from a scalar output signal. Phys. Rev. E, 76(2):027203. [doi:10.1103/PhysRevE. 76.027203]CrossRefGoogle Scholar
  4. Collins, J.J., Stewart, I.N., 1993. Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonl. Sci., 3(1):349–392. [doi:10.1007/BF02429870]CrossRefMATHMathSciNetGoogle Scholar
  5. Feki, M., 2003. An adaptive chaos synchronization scheme applied to secure communication. Chaos Sol. Fract., 18(1):141–148. [doi:10.1016/S0960-0779(02)00585-4]CrossRefMATHMathSciNetGoogle Scholar
  6. Femat, R., Solis-Perales, G., 2008. Robust Synchronization of Chaotic Systems via Feedback. Springer. [doi:10. 1007/978-3-540-69307-9]MATHGoogle Scholar
  7. Femat, R., Alvarez-Ramírez, J., Castillo-Toledo, B., et al., 1999. On robust chaos suppression in a class of nonlinear oscillators: application to Chua’s circuit. IEEE Trans. Circ. Syst. I, 46(9):1150–1152. [doi:10.1109/81. 788818]CrossRefMATHGoogle Scholar
  8. Femat, R., Alvarez-Ramírez, J., Fernández-Anaya, G., 2000. Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization. Phys. D, 139(3–4):231–246. [doi:10.1016/S0167-2789(99)00226-2]CrossRefMATHMathSciNetGoogle Scholar
  9. Femat, R., Ortiz, R.J., Perales, G.S., 2001. An adaptive chaos synchronization scheme applied to secure communication scheme via robust asymptotic feedback. IEEE Trans. Circ. Syst. I, 48(10):1161–1169.CrossRefGoogle Scholar
  10. Freitas, U.S., Macau, E.E.N., Grebogi, C., 2005. Using geometric control and chaotic synchronization to estimate an unknown model parameter. Phys. Rev. E, 71(4):047203. [doi:10.1103/PhysRevE.71.047203]CrossRefGoogle Scholar
  11. Grassi, G., Mascoio, S., 1999. Synchronizing hyperchaotic systems by observer design. IEEE Trans. Circ. Syst. II, 46(4):478–483. [doi:10.1109/82.755422]CrossRefMATHGoogle Scholar
  12. Haefner, J.W., 2005. Modeling Biological Systems: Principles and Applications. Springer, New York, USA.Google Scholar
  13. Han, J.Q., 1995. The extended state observer of a class of uncertain systems. Contr. & Dec., 110(1):85–88 (in Chinese).Google Scholar
  14. Isidori, A, 1989. Nonlinear Control System. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  15. Karimi, H.R., 2011. Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations. Int. J. Contr. Automat. Syst., 9(4):671–680. [doi:10.1007/s12555-011-0408-8]CrossRefGoogle Scholar
  16. Karimi, H.R., 2012. A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties. J. Franklin Inst., 349(4):1480–1496. [doi:10. 1016/j.jfranklin.2011.09.015]CrossRefMATHMathSciNetGoogle Scholar
  17. Karimi, H.R., Gao, H., 2010. New delay-dependent exponential H synchronization for uncertain neural networks with mixed time-delays. IEEE Trans. Syst. Man Cybern. Part B, 40(1):173–185. [doi:10.1109/TSMCB.2009.2024408]Google Scholar
  18. Kocarev, L., Parlitz, U., 1995. General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 74(25):5028–5031. [doi:10.1103/PhysRevLett.74.5028]CrossRefGoogle Scholar
  19. Levant, A., 2003. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Contr., 76(9–10):924–941. [doi:10.1080/0020717031000099029]CrossRefMATHMathSciNetGoogle Scholar
  20. Levant, A., Pavlov, Y., 2008. Generalized homogeneous quasi-continuous controllers. Int. J. Robust Nonl. Contr., 18(4–5):385–398. [doi:10.1002/rnc.1199]CrossRefMathSciNetGoogle Scholar
  21. Li, X.R., Zhao, L.Y., Zhao, G.Z., 2005. Sliding mode control for synchronization of chaotic systems with structure or parameter mismatching. J. Zhejiang Univ.-Sci., 6(6):571–576. [doi:10.1631/jzus.2005.A0571]CrossRefGoogle Scholar
  22. Liu, Y., Tang, W., 2009. Adaptive synchronization of chaotic systems and its uses in cryptanalysis. In: Recent Advances in Nonlinear Dynamics and Synchronization (NDS-1), Theory and Applications. Springer, 254:307–346.CrossRefGoogle Scholar
  23. Liu, Y., Tang, W., Kocarev, L., 2008. An adaptive observer design for the auto-synchronization of Lorenz system. Int. J. Bifurcat. Chaos, 18(8):2415–2423. [doi:10.1142/S0218127408021786]CrossRefMATHMathSciNetGoogle Scholar
  24. Mao, Y., 2009. Adaptive Synchronization and Its Use in Biological Neural Network Modeling. MS Thesis, City University of Hong Kong, Hong Kong, China.Google Scholar
  25. Mao, Y., Tang, W., Liu, Y., et al., 2009. Identification of biological neurons using adaptive observers. Cogn. Process., 10(Suppl 1):41–53. [doi:10.1007/s10339-008-0230-2]CrossRefGoogle Scholar
  26. Nijmeijer, H., Mareels, I.M.Y., 1997. An observer looks at synchronization. IEEE Trans. Circ. Syst. I, 44(10):882–890. [doi:10.1109/81.633877]CrossRefMathSciNetGoogle Scholar
  27. Pecora, L.M., Carroll, T.L., 1990. Synchronization in chaotic systems. Phys. Rev. Lett., 64(8):821–824.CrossRefMATHMathSciNetGoogle Scholar
  28. Pecora, L.M., Carroll, T.L., 1991. Driving systems with chaotic signals. Phys. Rev. A, 44(4):2374–2383. [doi:10.1103/PhysRevA.44.2374]CrossRefGoogle Scholar
  29. Rodríguez, A., de León, J., Fridman, L., 2008. Quasicontinuous high-order sliding-mode controllers for reduced-order chaos synchronization. Int. J. Nonl. Mech., 43(9):948–961. [doi:10.1016/j.ijnonlinmec.2008. 07.007]CrossRefGoogle Scholar
  30. Trentelman, H.L., Takaba, K., Monshizadeh, N., 2013. Robust synchronization of uncertain linear multi-agent systems. IEEE Trans. Automat. Contr., 58(6):1511–1523. [doi:10.1109/TAC.2013.2239011]CrossRefMathSciNetGoogle Scholar
  31. Wang, B., Shi, P., Karimi, H.R., et al., 2012. H robust controller design for the synchronization of master-slave chaotic systems with disturbance input. Model. Identif. Contr., 33(1):27–34. [doi:10.4173/mic.2012.1.3]CrossRefGoogle Scholar
  32. Wang, Y., Chik, D.T.M., Wang, Z.D., 2000. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Phys. Rev. E, 61(1):740–746. [doi:10.1103/PhysRevE.61.740]CrossRefMathSciNetGoogle Scholar
  33. Wittmeier, S., Song, G., Duffin, J., et al., 2008. Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. PNAS, 105(46):18000–18005. [doi:10.1073/pnas.0809377105]CrossRefGoogle Scholar
  34. Xu, J., Min, L., Chen, G., 2004. A chaotic communication scheme based on generalized synchronization and hash functions. Chin. Phys. Lett., 21(8):1445–1448. [doi:10.1088/0256-307X/21/8/009]CrossRefGoogle Scholar
  35. Yang, T., Shao, H.H., 2002. Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design. Phys. Rev. E, 65(4):046210. [doi:10.1103/PhysRevE.65.046210]CrossRefMathSciNetGoogle Scholar
  36. Youssef, T., Chadli, M., Karimi, H.R., et al., 2013. Chaos synchronization based on unknown input proportional multiple-integral fuzzy observer. Abstr. Appl. Anal., 2013:670878. [doi:10.1155/2013/670878]CrossRefMathSciNetGoogle Scholar
  37. Yu, D., Parlitz, U., 2008. Estimating parameters by autosynchronization with dynamics restrictions. Phys. Rev. E, 77(6 Pt 2):066221. [doi:10.1103/PhysRevE.77.066221]CrossRefMathSciNetGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Naval Architecture and Ocean EngineeringZhejiang Ocean UniversityZhoushanChina
  2. 2.Department of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations