Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 4, pp 293–299 | Cite as

A frequency domain design of PID controller for an AVR system

  • Md Nishat Anwar
  • Somnath Pan
Article

Abstract

We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regulation (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.

Key words

Automatic voltage regulation (AVR) PID controller Frequency response matching 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguila-Camacho, N., Duarte-Mermoud, M.A., 2013. Fractional adaptive control for an automatic voltage regulator. ISA Trans., 52(6):807–815. [doi:10.1016/j.isatra.2013.06.005]CrossRefGoogle Scholar
  2. Ang, K.H., Chong, G., Li, Y., 2005. PID control system analysis, design and technology. IEEE Trans. Contr. Syst. Technol., 13(4):559–576. [doi:10.1109/TCST.2005.847331]CrossRefGoogle Scholar
  3. Astrom, K.J., Hagglund, T., 1995. PID Controllers Theory Design and Tuning (2nd Ed.). Instrument Society of America, Research Triangle Park, North Caorlina.Google Scholar
  4. Chen, D., Seborg, D.E., 2002. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res., 41(19):4807–4822. [doi:10.1021/ie010756m]CrossRefGoogle Scholar
  5. Gaing, Z.L., 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Conv., 19(2):384–391. [doi:10.1109/TEC.2003.821821]CrossRefGoogle Scholar
  6. Ho, W.K., Hang, C.C., Cao, L.S., 1995. Tuning of PID controllers based on gain and phase margin specification. Automatica, 31(3):497–502. [doi:10.1016/0005-1098(94)00130-B]MATHMathSciNetCrossRefGoogle Scholar
  7. Kim, D.H., 2011. Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl. Soft Comput., 11(1):11–22. [doi:10.1016/j.asoc.2009.01.004]CrossRefGoogle Scholar
  8. Kundur, P., 1994. Power System Stability and Control. McGraw Hill, New York.Google Scholar
  9. Mukherjee, V., Ghoshal, S.P., 2007. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr. Power Syst. Res., 77(12):1689–1698. [doi:10.1016/j.epsr.2006.12.004]CrossRefGoogle Scholar
  10. O’Dwyer, A., 2006. Handbook of PI and PID Controller Tuning Rules (2nd Ed.). Imperial College Press, London. [doi:10.1142/p424]CrossRefGoogle Scholar
  11. Pan, I., Das, S., 2013. Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int. J. Electr. Power Energy Syst., 51:106–118. [doi:10.1016/j.ijepes.2013.02.021]CrossRefGoogle Scholar
  12. Pan, S., Pal, J., 1995. Reduced order modelling of discretetime systems. Appl. Math. Model., 19(3):133–138. [doi: 10.1016/0307-904X(94)00010-4]MATHCrossRefGoogle Scholar
  13. Panagopoulos, H., Astrom, K.J., Hagglund, T., 2002. Design of PID controllers based on constrained optimisation. IEE Proc.-Contr. Theory Appl., 149(1):32–40. [doi:10.1049/ip-cta:20020102]CrossRefGoogle Scholar
  14. Rivera, D.E., Morari, M., Skogestad, S., 1986. Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev., 25(1):252–265. [doi:10.1021/i200032a041]CrossRefGoogle Scholar
  15. Shen, J.C., 2002. New tuning method for PID controller. ISA Trans., 41(4):473–484. [doi:10.1016/S0019-0578(07)60103-7]CrossRefGoogle Scholar
  16. Tan, W., 2010. Unified tuning of PID load frequency controller for power system via IMC. IEEE Trans. Power Syst., 25(1):341–350. [doi:10.1109/TPWRS.2009.2036463]CrossRefGoogle Scholar
  17. Wang, L., Barnes, T.J.D., Cluett, W.R., 1995. New frequency domain design method for PID controllers. IEE Proc.-Contr. Theory Appl., 142(4):265–271. [doi:10.1049/ipcta: 19951859]MATHCrossRefGoogle Scholar
  18. Zamani, M., Karimi-Ghartemani, M., Parniani, M., 2009. Design of a fractional order PID controller for an AVR using particle swarm optimization. Contr. Eng. Pract., 17(12):1380–1387. [doi:10.1016/j.conengprac.2009.07.005]CrossRefGoogle Scholar
  19. Zhu, H., Li, L., Zhao, Y., et al., 2009. CAS algorithm-based optimum design of PID controller in AVR system. Chaos Sol. Fract., 42(2):792–800. [doi:10.1016/j.chaos.2009.02.006]MathSciNetCrossRefGoogle Scholar
  20. Ziegler, J.G., Nichols, N.B., 1942. Optimum settings for automatic controllers. Trans. ASME, 64:759–768.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations