Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 1, pp 31–42 | Cite as

Exponential stability of nonlinear impulsive switched systems with stable and unstable subsystems

Article

Abstract

Exponential stability and robust exponential stability relating to switched systems consisting of stable and unstable nonlinear subsystems are considered in this study. At each switching time instant, the impulsive increments which are nonlinear functions of the states are extended from switched linear systems to switched nonlinear systems. Using the average dwell time method and piecewise Lyapunov function approach, when the total active time of unstable subsystems compared to the total active time of stable subsystems is less than a certain proportion, the exponential stability of the switched system is guaranteed. The switching law is designed which includes the average dwell time of the switched system. Switched systems with uncertainties are also studied. Sufficient conditions of the exponential stability and robust exponential stability are provided for switched nonlinear systems. Finally, simulations show the effectiveness of the result.

Key words

Average dwell time Impulse Exponential stability Robustness 

CLC number

TP13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de la Sen, M., 2006. Stability of impulsive time-varying systems and compactness of the operators mapping the input space into the state and output spaces. J. Math. Anal. Appl., 321(2):621–650. [doi:10.1016/j.jmaa.2005.08.038]CrossRefMATHMathSciNetGoogle Scholar
  2. de la Sen, M., Luo, N.S., 2003. A note on the stability of linear time-delay systems with impulsive inputs. IEEE Trans. Circ. Syst. I, 50(1):149–152. [doi:10.1109/TCSI.2002.807514]CrossRefGoogle Scholar
  3. Guan, Z.H., Hill, D.J., Shen, X.M., 2005. On hybrid impulsive and switching systems and application to nonlinear control. IEEE Trans. Automat. Control, 50(7):1058–1062. [doi:10.1109/TAC.2005.851462]CrossRefMathSciNetGoogle Scholar
  4. Hespanha, J.P., Morse, A.S., 1999. Stability of switched systems with average dwell-time. Proc. 38th IEEE Conf. on Decision and Control, p.2655–2660. [doi:10.1109/CDC.1999.831330]Google Scholar
  5. Hespanha, J.P., Liberzon, D., Teel, A.R., 2008. Lyapunov conditions for input-to-state stability of impulsive systems. Automatica, 44(11):2735–2744. [doi:10.1016/j.automatica.2008.03.021]CrossRefMATHMathSciNetGoogle Scholar
  6. Hiskens, I.A., 2001. Stability of hybrid system limit cycles: application to the compass gait biped robot. Proc. 40th IEEE Conf. on Decision and Control, p.774–779. [doi:10.1109/.2001.980200]Google Scholar
  7. Kim, S., Campbell, S.A., Liu, X.Z., 2006. Stability of a class of linear switching systems with time delay. IEEE Trans. Circ. Syst. I, 53(2):384–393. [doi:10.1109/TCSI.2005.856666]CrossRefMathSciNetGoogle Scholar
  8. Lennartson, B., Tittus, M., Egardt, B., et al., 1996. Hybrid systems in process control. IEEE Control Syst. Mag., 16(5):45–56. [doi:10.1109/37.537208]CrossRefGoogle Scholar
  9. Liberzon, D., 2003. Switching in Systems and Control. Birkhäuser, Boston. [doi:10.1007/978-1-4612-0017-8]CrossRefMATHGoogle Scholar
  10. Liu, B., Marquez, H.J., 2008. Controllability and observability for a class of controlled switching impulsive systems. IEEE Trans. Automat. Control, 53(10):2360–2366. [doi: 10.1109/TAC.2008.2007476]CrossRefMathSciNetGoogle Scholar
  11. Liu, J., Liu, X.Z., Xie, W.C., 2011. Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica, 47(5):899–908. [doi:10.1016/j.automatica. 2011.01.061]CrossRefMATHMathSciNetGoogle Scholar
  12. Marchenko, V.M., Zaczkiewicz, Z., 2009. Representation of solutions of control hybrid differential-difference impulse systems. Differ. Equat., 45(12):1811–1822. [doi:10.1134/S0012266109120118]CrossRefMATHMathSciNetGoogle Scholar
  13. Petersen, I.R., Hollot, C.V., 1986. A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 22(4):397–411. [doi:10.1016/0005-1098(86)90045-2]CrossRefMATHMathSciNetGoogle Scholar
  14. Qin, S.Y., Song, Y.H., 2001. The theory of hybrid control systems and its application perspective in electric power systems. Proc. Int. Conf. on Info-Tech and Info-Net, p.85–94. [doi:10.1109/ICII.2001.983729]Google Scholar
  15. Sun, X.M., Wang, D., Wang, W., et al., 2007. Stability analysis and L2-gain of switched delay systems with stable and unstable subsystems. IEEE 22nd Int. Symp. on Intelligent Control, p.208–213. [doi:10.1109/ISIC.2007.4450886]Google Scholar
  16. Sun, X.M., Wang, W., Liu, G.P., et al., 2008. Stability analysis for linear switched systems with time-varying delay. IEEE Trans. Syst. Man Cybern. B, 38(2):528–533. [doi:10.1109/TSMCB.2007.912078]CrossRefGoogle Scholar
  17. Varaiya, P., 1993. Smart cars on smart roads: problems of control. IEEE Trans. Automat. Control, 38(2):195–207. [doi:10.1109/9.250509]CrossRefMathSciNetGoogle Scholar
  18. Wang, M., Dimirovski, G.M., Zhao, J., 2008. Average dwell-time method to stabilization and L2-gain analysis for uncertain switched nonlinear systems. Proc. 17th IFAC World Congress, p.7642–7647. [doi:10.3182/20080706-5-KR-1001.01292]Google Scholar
  19. Wicks, M., Peleties, P., DeCarlo, R., 1998. Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Eur. J. Control, 4(2):140–147. [doi: 10.1016/S0947-3580(98)70108-6]CrossRefMATHGoogle Scholar
  20. Xu, H.L., Teo, K.L., 2010. Exponential stability with L2-gain condition of nonlinear impulsive switched systems. IEEE Trans. Automat. Control, 55(10):2429–2433. [doi:10. 1109/TAC.2010.2060173]CrossRefMathSciNetGoogle Scholar
  21. Xu, H.L., Liu, X.Z., Teo, K.L., 2005. Robust H stabilization with definite attendance of uncertain impulsive switched systems. ANZIAM J., 46(4):471–484.CrossRefMATHMathSciNetGoogle Scholar
  22. Xu, H.L., Teo, K.L., Liu, X.Z., 2008. Robust stability analysis of guaranteed cost control for impulsive switched systems. IEEE Trans. Syst. Man Cybern. B, 38(5):1419–1422. [doi: 10.1109/TSMCB.2008.925747]CrossRefGoogle Scholar
  23. Yao, J., Guan, Z.H., Chen, G.R., et al., 2006. Stability, robust stabilization and H control of singular-impulsive systems via switching control. Syst. Control Lett., 55(11): 879–886. [doi:10.1016/j.sysconle.2006.05.002]CrossRefMATHMathSciNetGoogle Scholar
  24. Zhai, G.S., Hu, B., Yasuda, K., et al., 2001a. Disturbance attenuation properties of time-controlled switched systems. J. Franklin Inst., 338(7):765–779. [doi:10.1016/S0016-0032(01)00030-8]CrossRefMATHMathSciNetGoogle Scholar
  25. Zhai, G.S., Hu, B., Yasuda, K., et al., 2001b. Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. Int. J. Syst. Sci., 32(8): 1055–1061. [doi:10.1080/00207720116692]MATHMathSciNetGoogle Scholar
  26. Zhai, G.S., Lin, H., Kim, Y., et al., 2005. L2-gain analysis for switched systems with continuous-time and discrete-time subsystems. Int. J. Control, 78(15):1198–1205. [doi:10.1080/00207170500274966]CrossRefMATHMathSciNetGoogle Scholar
  27. Zhu, W., 2010. Stability analysis of switched impulsive systems with time delays. Nonl. Anal. Hybr. Syst., 4(3):608–617. [doi:10.1016/j.nahs.2010.03.009]CrossRefMATHGoogle Scholar
  28. Zong, G.D., Xu, S.Y., Wu, Y.Q., 2008. Robust H stabilization for uncertain switched impulsive control systems with state delay: an LMI approach. Nonl. Anal. Hybr. Syst., 2(4):1287–1300. [doi:10.1016/j.nahs.2008.09.018]CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Information Science and TechnologyXiamen UniversityXiamenChina

Personalised recommendations