Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 10, pp 777–784 | Cite as

Curve length estimation based on cubic spline interpolation in gray-scale images

Article

Abstract

This paper deals with a novel local arc length estimator for curves in gray-scale images. The method first estimates a cubic spline curve fit for the boundary points using the gray-level information of the nearby pixels, and then computes the sum of the spline segments’ lengths. In this model, the second derivatives and y coordinates at the knots are required in the computation; the spline polynomial coefficients need not be computed explicitly. We provide the algorithm pseudo code for estimation and preprocessing, both taking linear time. Implementation shows that the proposed model gains a smaller relative error than other state-of-the-art methods.

Key words

Arc length estimation Cubic spline interpolation Gray-scale image Local algorithm 

CLC number

TP751 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cai, J., Walker, R., 2010. Height estimation from monocular image sequences using dynamic programming with explicit occlusions. IET Comput. Vis., 4(3):149–161. [doi:10.1049/iet-cvi.2009.0063]MathSciNetCrossRefGoogle Scholar
  2. Coeurjolly, D., Klette, R., 2004. A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):252–258. [doi:10.1109/TPAMI.2004.1262194]CrossRefGoogle Scholar
  3. Deng, H., Himed, B., Wicks, M.C., 2006. Image feature based space-time processing for ground moving target detection. IEEE Signal Process. Lett., 13(4):216–219. [doi:10.1109/LSP.2005.863676]CrossRefGoogle Scholar
  4. Dyer, S.A., Dyer, J.S., 2001. Cubic-spline interpolation. 1. IEEE Instrum. Meas. Mag., 4(1):44–46. [doi:10.1109/5289.911175]CrossRefGoogle Scholar
  5. Foteinopoulos, P., 2009. Cubic spline interpolation to develop contours of large reservoirs and evaluate area and volume. Adv. Eng. Softw., 40(1):23–29. [doi:10.1016/j.advengsoft.2008.03.005]CrossRefMATHGoogle Scholar
  6. Freeman, H., 1961. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput., 10(2):260–268. [doi:10.1109/TEC.1961.5219197]MathSciNetCrossRefGoogle Scholar
  7. Klette, R., Kovalevsky, V.V., Yip, B., 1999. Length estimation of digital curves. SPIE, 3811:117–128. [doi:10.1117/12.364118]CrossRefGoogle Scholar
  8. Lachaud, J.O., Provençal, X., 2011. Two linear-time algorithms for computing the minimum length polygon of a digital contour. Discr. Appl. Math., 159(18):2229–2250. [doi:10.1016/j.dam.2011.08.002]CrossRefMATHGoogle Scholar
  9. Sladoje, N., Lindblad, J., 2009. High-precision boundary length estimation by utilizing gray-level information. IEEE Trans. Pattern Anal. Mach. Intell., 31(2):357–363. [doi:10.1109/TPAMI.2008.184]CrossRefGoogle Scholar
  10. Suhadolnik, A., Petrišič, J., Kosel, F., 2010. Digital curve length calculation by using B-spline. J. Math. Imag. Vis., 38(2):132–138. [doi:10.1007/s10851-010-0208-4]CrossRefGoogle Scholar
  11. Tadrous, P.J., 2010. On the concept of objectivity in digital image analysis in pathology. Pathology, 42(3):207–211. [doi:10.3109/00313021003641758]CrossRefGoogle Scholar
  12. Zhang, M., Mou, X., Zhang, L., 2011. Non-shift edge based ratio (NSER): an image quality assessment metric based on early vision features. IEEE Signal Process. Lett., 18(5):315–318. [doi:10.1109/LSP.2011.2127473]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyJilin UniversityChangchunChina
  2. 2.MOE Key Laboratory of Symbolic Computation and Knowledge EngineeringJilin UniversityChangchunChina

Personalised recommendations