Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 4, pp 274–278 | Cite as

A trapezoidal cantilever density sensor based on MEMS technology

Article

Abstract

A trapezoidal cantilever density sensor is developed based on micro-electro-mechanical systems (MEMS) technology. The sensor measures fluid density through the relationship between the density and the resonant frequency of the cantilever immersed in the fluid. To improve the sensitivity of the sensor, the modal and harmonic response analyses of trapezoidal and rectangular cantilevers are simulated by ANSYS software. The higher the resonant frequency of the cantilever immersed in the fluid, the higher the sensitivity of the sensor; the higher the resonant strain value, the easier the detection of the output signal of the sensor. Based on the results of simulation, the trapezoidal cantilever is selected to measure the densities of dimethyl silicone and toluene at the temperature ranges of 30 to 55 °C and 26 to 34 °C, respectively. Experimental results show that the trapezoidal cantilever density sensor has a good performance.

Key words

Micro-electro-mechanical systems (MEMS) Density sensor Trapezoidal cantilever Resonant frequency 

CLC number

TH81 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandstetter, S., Riesch, C., Reichel, E.K., 2009. Sensing viscosity and density with a micromachined suspended plate resonator. Proc. Chem., 1(1):1467–1470. [doi:10.1016/j.proche.2009.07.366]CrossRefGoogle Scholar
  2. Cao-Paz, A.M., Rodríguez-Pardo, L., Fariña, J., Marcos-Acevedo, J., 2012. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries. Sensors, 12(8):10604–10620. [doi:10.3390/s120810604]CrossRefGoogle Scholar
  3. Corman, T., Enoksson, P., Noren, K., Stemme, G., 2000. A low-pressure encapsulated resonant fluid density sensor with feedback control electronics. Meas. Sci. Technol., 11(3):205–211. [doi:10.1088/0957-0233/11/3/306]CrossRefGoogle Scholar
  4. Ghatkesar, M.K., Rakhmatullina, E., Lang, H.P., Gerber, C., Hegner, M., Braun, T., 2008. Multi-parameter micro cantilever sensor for comprehensive characterization of Newtonian fluids. Sens. Actuat. B, 135(1):133–138. [doi:10.1016/j.snb.2008.08.012]CrossRefGoogle Scholar
  5. Goodwin, A.R.H., Donzier, E.P., Vancauwenberghe, O., 2006. A vibrating edge supported plate, fabricated by the methods of micro electro mechanical system for the simultaneous measurement of density and viscosity: results for methylbenzene and octane at temperatures between (323 and 423) K and pressures in the range (0.1 to 68) MPa. J. Chem. Eng. Data, 51(1):190–208. [doi:10.1021/je0503296]CrossRefGoogle Scholar
  6. Harrison, C., Seungoh, R., Goodwin, A., Hsu, K., Donzier, E., Marty, F., Mercier, B., 2006. A MEMS sensor for the measurement of density-viscosity for oilfield applications. SPIE, 6111:61110D-1–61110D-11. [doi:10.1117/12.645080]Google Scholar
  7. Heinisch, M., Reichel, E.K., Dufour, I., Jakoby, B., 2011. A resonating rheometer using two polymer membranes for measuring liquid viscosity and mass density. Sens. Actuat. A, 172(1):82–87. [doi:10.1016/j.sna.2011.02.031]CrossRefGoogle Scholar
  8. Igarashi, K., Kawashima, K., Kagawa, T., 2007. Development of simultaneous measurement system for instantaneous density, viscosity and flow rate of gases. Sens. Actuat. A, 140(1):1–7. [doi:10.1016/j.sna.2007.06.017]CrossRefGoogle Scholar
  9. Li, H., Wang, J., Li, X., Chen, D., 2011. Viscosity-density sensor with resonant torsional paddle for direct detection in liquid. IET Nanobiotechnol., 5(4):121–125. [doi:10.1049/iet-nbt.2011.0016]MathSciNetCrossRefGoogle Scholar
  10. Liao, H.S., Huang, K.Y., Chang, C.S., 2011. Cantilever-Based Mass Sensor Using High Order Resonances for Liquid Environment. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.652–655. [doi:10.1109/AIM.2011.6026984]Google Scholar
  11. Najmzadeh, M., Haasl, S., Enoksson, P., 2007. A silicon straight tube fluid density sensor. J. Micromech. Microeng., 17(8):1657. [doi:10.1088/0960-1317/17/8/032]CrossRefGoogle Scholar
  12. Rezazadeh, G., Ghanbari, M., Mirzaee, I., Keyvani, A., 2010. On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement, 43(10):1516–1524. [doi:10.1016/j.measurement.2010.08.022]CrossRefGoogle Scholar
  13. Rust, P., Dual, J., 2011. Novel Method for Gated Inductive Readout for Highly Sensitive and Low Cost Viscosity and Density Sensors. 16th Int. Solid-State Sensors, Actuators and Microsystems Conf., p.1088–1091. [doi:10.1109/TRANSDUCERS.2011.5969181]CrossRefGoogle Scholar
  14. Sparks, D., Smith, R., Schneider, R., Cripe, J., Massoud, A.S., Chimbayo, A., Najafi, N., 2003. A variable temperature, resonant density sensor made using an improved chip-level vacuum package. Sens. Actuat. A, 107(2):119–124. [doi:10.1016/S0924-4247(03)00350-9]CrossRefGoogle Scholar
  15. Sparks, D., Smith, R., Patel, J., Najafi, N., 2011. A MEMS-based low pressure, light gas density and binary concentration sensor. Sens. Actuat. A, 171(2):159–162. [doi:10.1016/j.sna.2011.08.011]CrossRefGoogle Scholar
  16. Waszczuk, K., Piasecki, T., Nitsch, K., Gotszalk, T., 2011. Application of piezoelectric tuning forks in liquid viscosity and density measurements. Sens. Actuat. B, 160(1): 517–523. [doi:10.1016/j.snb.2011.08.020]CrossRefGoogle Scholar
  17. Waugh, W.H., Gallacher, B.J., Burdess, J.S., 2011. A high-sensitivity resonant sensor realized through the exploitation of nonlinear dynamic behaviour. Meas. Sci. Technol., 22(10):105202. [doi:10.1088/0957-0233/22/10/105202]CrossRefGoogle Scholar
  18. Wilson, L., Campbell, A., Mutharasan, R., 2007. Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sens. Actuat. A, 138(1):44–51. [doi:10.1016/j.sna.2007.04.050]CrossRefGoogle Scholar
  19. Zribi, A., Knobloch, A., Tian, W.C., Goodwin, S., 2005. Micromachined resonant multiple gas sensor. Sens. Actuat. A, 122(1):31–38. [doi:10.1016/j.sna.2004.12.034]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Li-bo Zhao
    • 1
  • Long-qi Xu
    • 1
  • Gui-ming Zhang
    • 1
  • Yu-long Zhao
    • 1
  • Xiao-po Wang
    • 2
  • Zhi-gang Liu
    • 2
  • Zhuang-de Jiang
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.MOE Key Laboratory of Thermo-Fluid Science and EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations