Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 5, pp 311–331 | Cite as

A multi-paradigm decision modeling framework for combat system effectiveness measurement based on domain-specific modeling

  • Xiao-bo Li
  • Yong-lin Lei
  • Hans Vangheluwe
  • Wei-ping Wang
  • Qun Li
Article

Abstract

Decision modeling is an essential part of the combat system effectiveness simulation (CoSES), which needs to cope with the cognitive quality, diversity, flexibility, and higher abstraction of decision making. In this paper, a multi-paradigm decision modeling framework is proposed to support decision modeling at three levels of abstraction based on domain-specific modeling (DSM). This framework designs a domain-specific modeling language (DSML) for decision modeling to raise the abstraction level of modeling, transforms the domain-specific models to formalism-based models to enable formal analysis and early verification and validation, and implements the semantics of the DSML based on a Python scripts framework which incorporates the decision model into the whole simulation system. The case study shows that the proposed approach incorporates domain expertise and facilitates domain modeler’s participation in CoSES to formulate the problem using DSML in the problem domain, and enables formal analysis and automatic implementation of the decision model in the solution domain.

Key words

Multi-paradigm modeling (MPM) Decision modeling Domain-specific modeling (DSM) Effectiveness measurement Model transformation 

CLC number

TP391.9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G., 2006. The Graph Rewriting and Transformation Language: GReAT. Proc. 3rd Int. Workshop on Graph Based Tools, 1:1–8.Google Scholar
  2. Chen, K., Sztipanovits, J., Neema, S., 2005. Toward a Semantic Anchoring Infrastructure for Domain-Specific Modeling Languages. Proc. 5th ACM Int. Conf. on Embedded Software, p.35–43. [doi:10.1145/1086228.1086236]CrossRefGoogle Scholar
  3. Davis, J., 2003. GME: the Generic Modeling Environment. Proc. 18th Annual ACM SIGPLAN Conf. on Objectoriented Programming, Systems, Languages, and Applications, p.82–83.Google Scholar
  4. Davis, P.K., Bigelow, J.H., 1998. Experiments in Multiresolution Modeling (MRM). RAND Co., Santa Monica, CA.Google Scholar
  5. Ferayorni, A.E., Sarjoughian, H.S., 2007. Domain Driven Simulation Modeling for Software Design. Proc. 2007 Summer Computer Simulation Conf., p.297–304.Google Scholar
  6. France, R., Rumpe, B., 2005. Domain specific modeling. Softw. Syst. Model., 4(1):1–3. [doi:10.1007/s10270-005-0078-1]CrossRefGoogle Scholar
  7. Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G., 2012. Rapid synthesis of high-level architecture-based heterogeneous simulation: a model-based integration approach. Simulation, 88(2):217–232. [doi:10.1177/0037549711401950]CrossRefGoogle Scholar
  8. Li, F., Shen, X., 2010. A component-based aircraft instrument rapid modeling tool. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(11):911–918. [doi: 10.1631/jzus.C1001010]MathSciNetCrossRefGoogle Scholar
  9. Li, Q., Lei, Y., Hou, H., Wang, W., 2010. Simulation Model Portability Standard 2 and Its Application. Publishing House of Electronics Industry, Beijing, China, p.344 (in Chinese).Google Scholar
  10. Li, X., Lei, Y., Vangheluwe, H., Wang, W., Li, Q., 2011. Towards a DSM-based Framework for the Development of Complex Simulation Systems. Proc. 2011 Summer Computer Simulation Conf., p.210–215.Google Scholar
  11. Li, X., Lei, Y., Vangheluwe, H., Wang, W., Li, Q., 2013. Domain specific decision modelling and statistical analysis for combat system effectiveness simulation. J. Stat. Comput. Simul., in press. [doi:10.1080/00949655.2013.797421]Google Scholar
  12. Liu, H., Shi, Z., 2010. Intelligent Decision-Making Modeling Based on Object-Oriented Bayesian Network. Proc. 3rd Int. Conf. on Information and Computing, p.300–303. [doi:10.1109/ICIC.2010.347]Google Scholar
  13. Liu, L., 2007. Research on Modeling Fleet Cooperation Decision-Making System Based on Colored Petri Net. Master Thesis, Xidian University, Xi’an, China (in Chinese).Google Scholar
  14. Mittal, S., Douglass, S.A., 2011. From Domain Specific Languages to DEVS Components: Application to Cognitive M&S. Proc. Symp. on Theory of Modeling & Simulation: DEVS Integrative M&S Symp., p.256–265.Google Scholar
  15. Mittal, S., Risco-Martín, J.L., Zeigler, B.P., 2007. DEVSML: Automating DEVS Execution over SOA Towards Transparent Simulators. DEVS Integrative M&S Symp., p.1–9.Google Scholar
  16. Mosterman, P.J., Vangheluwe, H., 2004. Computer automated multi-paradigm modeling: an introduction. Simulation, 80(9):432–450. [doi:10.1177/0037549704050532]CrossRefGoogle Scholar
  17. Murata, T., 1989. Petri nets: properties, analysis and applications. Proc. IEEE, 77(4):541–580. [doi:10.1109/5.24143]CrossRefGoogle Scholar
  18. Neema, H., Nine, H., Hemingway, G., Sztipanovits, J., Karsai, G., 2009. Rapid Synthesis of Multi-model Simulations for Computational Experiments in C2. Armed Forces Communications and Electronics Association-George Mason University Symp.Google Scholar
  19. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S., Westergaard, M., Christensen, S., Jensen, K., 2003. CPN tools for editing, simulating, and analysing coloured Petri nets. LNCS, 2679:450–462. [doi:10.1007/3-540-44919-1_28]Google Scholar
  20. Sarjoughian, H., Huang, D., 2005. A Multi-formalism Modeling Composability Framework: Agent and Discrete-Event Models. 9th IEEE Int. Symp. on Distributed Simulation and Real-Time Applications, p.249–256. [doi:10.1109/DISTRA.2005.4]CrossRefGoogle Scholar
  21. Sarjoughian, H.S., Zeigler, B.P., 2000. DEVS and HLA: complementary paradigms for modeling and simulation? Simulation, 17(4):187–196.Google Scholar
  22. Seo, K.M., Song, H.S., Kwon, S.J., Kim, T.G., 2011. Measurement of effectiveness for an anti-torpedo combat system using a discrete event systems specification-based underwater warfare simulator. J. Def. Model. Simul., 8(3):157–171. [doi:10.1177/1548512910390245]Google Scholar
  23. Sokolowski, J.A., 2003. Enhanced decision modeling using multiagent system simulation. Simulation, 79(4):232–242. [doi:10.1177/0037549703038886]MathSciNetCrossRefGoogle Scholar
  24. Son, M., Kim, T., 2012a. Torpedo evasion simulation of underwater vehicle using fuzzy-logic-based tactical decision making in script tactics manager. Expert Syst. Appl., 39(9): 7995–8012. [doi:10.1016/j.eswa.2012.01.113]CrossRefGoogle Scholar
  25. Son, M., Kim, T., 2012b. Maneuvering control simulation of underwater vehicle based on combined discrete-event and discrete-time modeling. Expert Syst. Appl., 39(17): 12992–13008. [doi:10.1016/j.eswa.2012.05.099]MathSciNetCrossRefGoogle Scholar
  26. Son, M.J., Cho, D.Y., Kim, T., Lee, K.Y., Nah, Y.I., 2010. Modeling and simulation of target motion analysis for a submarine using a script-based tactics manager. Adv. Eng. Softw., 41(3):506–516. [doi:10.1016/j.advengsoft.2009.10.009]CrossRefGoogle Scholar
  27. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G., 2011. 3 Metamodelling. LNCS, 6100:57–76. [doi:10.1007/978-3-642-16277-0_3]Google Scholar
  28. US Army Space and Missile Defense Command, 2012. EADSIM Executive Summary. Available from http://www.eadsim.com/EADSIMExecSum.pdf/ [Accessed on Apr. 21, 2013].Google Scholar
  29. Verbraeck, A., Valentin, E.C., 2008. Design Guidelines for Simulation Building Blocks. Proc. Winter Simulation Conf., p.923–932.Google Scholar
  30. Walter, T., Ebert, J., 2009. Combining DSLs and Ontologies Using Metamodel Integration. Proc. Working Conf. of Domain-specific Languages, p.148–169.CrossRefGoogle Scholar
  31. Wang, W., Wang, W., Zander, J., Zhu, Y., 2009. Threedimensional conceptual model for service-oriented simulation. J. Zhejiang Univ.-Sci. A, 10(8):1075–1081. [doi: 10.1631/jzus.A0920258]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiao-bo Li
    • 1
    • 2
  • Yong-lin Lei
    • 1
  • Hans Vangheluwe
    • 2
  • Wei-ping Wang
    • 1
  • Qun Li
    • 1
  1. 1.Institute of Simulation Engineering, College of Information Systems and ManagementNational University of Defense TechnologyChangshaChina
  2. 2.Department of Mathematics and Computer ScienceUniversity of AntwerpAntwerpBelgium

Personalised recommendations