Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 3, pp 214–221 | Cite as

Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty



A novel approach to enlarge the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainties based on the design of a nonlinear controller is proposed. The robust domain of attraction (RDA) is estimated using the parameter-dependent quadratic Lyapunov function and enlarged by the optimal controlling parameters. The problem of extending the RDA is indicated in a form of three-layer optimization problem. Some examples illustrate the efficiency of the proposed strategy in enlarging RDA.

Key words

Lyapunov function (LF) Optimal controlling parameters Robust domain of attraction (RDA) 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakhtiari, R., Yazdanpanah, M.J., 2005. Designing a Linear Controller for Polynomial Systems with the Largest Domain of Attraction via LMIs. Int. Conf. on Control and Automation, p.449–453. [doi:10.1109/ICCA.2005.1528161]Google Scholar
  2. Barreiro, A., Aracil, J., Pagano, D., 2002. Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions. Int. J. Control, 75(5): 314–327. [doi:10.1080/00207170110110568]MathSciNetMATHCrossRefGoogle Scholar
  3. Camilli, F., Grune, L., Wirth, F., 2001. A generalization of Zubov’s method to perturbed systems. SIAM J. Control Optim., 40(2):496–515. [doi:10.1137/S0363012999363 16X]MathSciNetMATHCrossRefGoogle Scholar
  4. Camilli, F., Grune, L., Wirth, F., 2002. A Generalization of Zubove’s Method to Perturbed Systems. Proc. 41st IEEE Conf. on Decision and Control, p.3518–3523. [doi:10. 1109/CDC.2002.1184420]Google Scholar
  5. Chesi, G., 2004a. On the Estimation of the Domain of Attraction for Uncertain Polynomial Systems via LMIs. Proc. 43rd IEEE Conf. on Decision and Control, p.881–886. [doi:10.1109/CDC.2004.1428796]Google Scholar
  6. Chesi, G., 2004b. Estimating the domain of attraction for uncertain polynomial systems. Automatica, 40(11):1981–1986. [doi:10.1016/j.automatica.2004.06.014]MathSciNetMATHCrossRefGoogle Scholar
  7. Chesi, G., 2005. Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Trans. Autom. Control, 49(10):1846–1850. [doi:10. 1109/TAC.2004.835589]MathSciNetCrossRefGoogle Scholar
  8. Chesi, G., 2009. Estimating the domain of attraction for nonpolynomial systems via LMI optimizations. Automatica, 45(6):1536–1541. [doi:10.1016/j.automatica.2009.02.011]MathSciNetMATHCrossRefGoogle Scholar
  9. Chesi, G., 2011. Control Synthesis for Enlarging the Robust Domain of Attraction in Uncertain Polynomial Systems. Proc. IASTED Int. Conf. on Control and Applications, p.729–738. [doi:10.2316/P.2011.729-038]Google Scholar
  10. Cruck, E., Moitie, R., Seube, N., 2001. Estimation of basins of attraction for uncertain systems with affine and Lipschitz dynamics. Dyn. Control, 11(3):211–227. [doi:10.1023/A:1015244102061]MathSciNetMATHCrossRefGoogle Scholar
  11. Haghighatnia, S., Moghaddam, R.K., 2012. Directional extension of the domain of attraction to increase critical clearing time of nonlinear systems. J. Am. Sci., 8(1): 444–449.Google Scholar
  12. Hahn, W., 1967. Stability of Motion. Springer, Berlin (in German).MATHGoogle Scholar
  13. Kaslik, E., Balint, A.M., Balint, S., 2005. Methods for determination and approximation of the domain of attraction. Nonl. Anal. Theory Methods Appl., 60(4):703–717. [doi:10.1016/]MathSciNetMATHCrossRefGoogle Scholar
  14. Khalil, H.K., 2002. Nonlinear Systems (3rd Ed.). Prentice Hall, Upper Saddle River, New Jersey.MATHGoogle Scholar
  15. La Salle, J., Lefschetz, S., 1961. Stability by Liapunov’s Direct Method. Academic Press, New York.MATHGoogle Scholar
  16. Li, C., Ryoo, C.S., Li, N., Cao, L., 2009. Estimating the domain of attraction via moment matrices. Bull. Kor. Math. Soc., 46(6):1237–1248. [doi:10.4134/BKMS.2009.46.6.1237]MathSciNetMATHCrossRefGoogle Scholar
  17. Matallana, L.G., Blanco, A.M., Bandoni, J.A., 2011. Nonlinear dynamic systems design based on the optimization of the domain of attraction. Math. Comput. Model., 53(5–6): 731–745. [doi:10.1016/j.mcm.2010.10.011]MathSciNetMATHCrossRefGoogle Scholar
  18. Paice, A., Wirth, F., 1998. Robustness Analysis of Domains of Attraction of Nonlinear Systems. Proc. Mathematical Theory of Networks and Systems, p.353–356.Google Scholar
  19. Rapoport, L.B., 1999. Estimation of an Attraction Domain for Multivariable Lur’e Systems Using Looseless Extension of the S-Procedure. Proc. American Control Conf., p.2395–2396. [doi:10.1109/ACC.1999.786474]Google Scholar
  20. Rapoport, L.B., Morozov, Y.V., 2008. Estimating the attraction domain of the invariant set in the problem of wheeled robot control. Autom. Remote Control, 69(11):1859–1872. [doi:10.1134/S0005117908110039]MathSciNetMATHCrossRefGoogle Scholar
  21. Tan, W., 2006. Nonlinear Control Analysis and Synthesis Using Sum-of-Squares Programming. PhD Thesis, University of California, Berkeley.Google Scholar
  22. Topcu, U., Packard, A.K., Seiler, P., Balas, G.J., 2010. Robust region of attraction estimation. IEEE Trans. Autom. Control, 55(1):137–142. [doi:10.1109/TAC.2009.2033751]MathSciNetCrossRefGoogle Scholar
  23. Trofino, A., 2000. Robust Stability and Domain of Attraction of Uncertain Nonlinear Systems. Proc. American Control Conf., p.3707–3710. [doi:10.1109/ACC.2000.879262]Google Scholar
  24. Vidyasagar, M., 1993. Nonlinear Systems Analysis. Prentice Hall, New Jersey.MATHGoogle Scholar
  25. Zhai, G., Matsune, I., Imae, J., Kobayashi, T., 2009. A note on multiple Lyapunov functions and stability condition for switched and hybrid systems. Int. J. Innov. Comput. Inf. Control, 5(5):1189–1199.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sara Haghighatnia
    • 1
  • Reihaneh Kardehi Moghaddam
    • 1
  1. 1.Department of Electrical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations