Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 13, Issue 10, pp 793–798 | Cite as

Design of MMIC oscillators using GaAs 0.2 μm PHEMT technology

  • Neda Kazemy Najafabadi
  • Sare Nemati
  • Massoud Dousti
Article

Abstract

We propose a feedback type oscillator and two negative resistance oscillators. These microwave oscillators have been designed in the S band frequency. A relatively symmetric resonator is used in the feedback type oscillator. The first negative resistance oscillator uses a simple lumped element resonator which is substituted by a microstrip resonator in the second oscillator to improve results. The negative resistance oscillator produces 4.207 dBm and 7.124 dBm output power with the lumped element resonator and microstrip resonator respectively, and the feedback type oscillator produces −10.707 dBm output power. The feedback type oscillator operates at 3 GHz with phase noise levels at −83.30 dBc/Hz and −103.3 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively. The phase noise levels of the negative resistance oscillator with the lumped element resonator are −94.64 dBc/Hz and −116 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively, at an oscillation frequency of 3.053 GHz. With the microstrip resonator the phase noise levels are −99.49 dBc/Hz and −119.641 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively, at an oscillation frequency of 3.072 GHz. The results showed that both the output power and the phase noise of the negative resistance oscillators were better than those of the feedback type oscillator.

Key words

Microwave oscillator Feedback type Negative resistance Resonator Advanced design system software 

CLC number

TN752.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ain, M.F., Lancaster, M.J., Gardner, P., 2001. Design of L-Band Microwave Oscillators. 6th IEEE High Frequency Postgraduate Student Colloquium, p.19–24.Google Scholar
  2. Chenakin, A., 2009. Phase noise reduction in microwave oscillators. Microw. J., 52:124–140.Google Scholar
  3. Choi, S., Yu, H., Kim, Y., 2009. A 2.4/5.2-GHz dual band CMOS VCO using bias matching network. J. Semicond. Technol. Sci., 9(4):192–197. [doi:10.5573/JSTS.2009.9.4.192]CrossRefGoogle Scholar
  4. Collin, R.E., 1992. Fundamentals of Microwave Engineering (2nd Ed.). McGraw-Hill, NY.Google Scholar
  5. Ellinger, F., 2008. Radio Frequency Integrated Circuits and Technologies (2nd Ed.). Springer Verlag Berlin Heidelberg. [doi:10.1007/978-3-540-69325-3]CrossRefGoogle Scholar
  6. Gilmore, R., Besser, L., 2003. Practical RF Circuit Design for Modern Wireless Systems. Vol. 2, Artech House, London.Google Scholar
  7. Gonzalez, G., 1997. Microwave Transistor Amplifiers: Analysis and Design (2nd Ed.). Prentice-Hall, Inc., New Jersey.Google Scholar
  8. Gonzalez-Posadas, V., Jimenez-Martin, J.L., Parra-Cerrada, A., Segovia-Vargas, D., Garcia-Munoz, L.E., 2011. Oscillator accurate linear analysis and design classic linear methods review and comments. Progr. Electromagn. Res., 118:89–116. [doi:10.2528/PIER11041403]CrossRefGoogle Scholar
  9. Greennikov, A.V., 1999. Stability of negative resistance oscillator circuits. Int. J. Electr. Eng. Educ., 36:242–254.Google Scholar
  10. Hauspie, D., Park, E., Craninckx, J., 2007. Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size. IEEE J. Solid-State Circ., 42(7):1472–1480. [doi:10.1109/JSSC.2007.899105]CrossRefGoogle Scholar
  11. Krowne, C.M., 2006. Network analaysis of microwave oscillators using microstrip transmission lines. IEEE Electron. Lett., 13(4):115–117. [doi:10.1049/el:19770081]CrossRefGoogle Scholar
  12. Mahyuddin, N.M., Ain, M.F., Hassan, S., 2006. Modeling of a 10GHz Dielectric Resonator Oscillator in ADS. Int. RF and Microwave Conf., p.106–110. [doi:10.1109/RFM.2006.331048]Google Scholar
  13. Pozar, D.M., 1993. Microwave Engineering. Addison-Wesley, USA.Google Scholar
  14. Ramarajn, B., Sreekanth, S., Kumari, D.L., 2011. Design and development of X-band oscillator for FM telemetry transmitter. Int. J. Eng. Sci. Technol., 3(5):4003–4013.Google Scholar
  15. Razavi, B., 1989. RF Microelectronics. Prentice Hall, New Jersey.Google Scholar
  16. Tony, C.H., 2001. The Design of 2.4 GHz Bipolar Oscillator by Using the Method of Negative Resistance. Microwave Laboratory, Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.Google Scholar
  17. Yoo, H., Maharjan, R.K., Kim, N., 2010. An X-band InGaP/GaAs hetero-junction bipolar transistor based microwave integrated circuit differential voltage controlled oscillator for satellite communications. IETE J., 56:340–345.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Neda Kazemy Najafabadi
    • 1
  • Sare Nemati
    • 1
  • Massoud Dousti
    • 2
  1. 1.Department of Electrical Engineering, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations