Skip to main content
Log in

A high performance simulation methodology for multilevel grid-connected inverters

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

To design a high reliability multilevel grid-connected inverter, a high performance simulation methodology based on Saber is proposed. The simulation methodology with optimized simulation speed can simulate the factors that have significant impacts on the stability and performance of the control system, such as digital delay, dead band, and the quantization error. The control algorithm in the simulation methodology is implemented using the C language, which facilitates the future porting to an actual system since most actual digital controllers are programmed in the C language. The modeling of the control system is focused mainly on diode-clamped three-level grid-connected inverters, and simulations for other topologies can be easily built based on this simulation. An example of designing a proportional-resonant (PR) controller with the aid of the simulation is introduced. The integer scaling effect in fixed-point digital signal processors (DSPs) on the control system is demonstrated and the performance of the controller is validated through experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alepuz, S., Busquets-Monge, S., Bordonau, J., Gago, J., Gonzalez, D., Balcells, J., 2006. Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Ind. Electron., 53(5):1504–1511. [doi:10.1109/TIE.2006.882021]

    Article  Google Scholar 

  • Bao, W.B., Bao, J.Y., 2010. Modeling and Simulation of Multilevel Current Source Inverter Based on SIMetrix/SIMPLIS. Int. Conf. on Computer Application and System Modeling, p.466–470. [doi:10.1109/ICCASM.2010.5620416]

  • Castoldi, M.F., Aguiar, M.L., Junior, A.A.O., Monteiro, J.R.B.A., 2006. A Rapid Prototype Design to Investigate the FPGA-Based DTC Strategy Applied to the Speed Control of Induction Motors. IEEE Int. Conf. on Industrial Technology, p.955–960. [doi:10.1109/ICIT.2006.372304]

  • Chwirka, S., 2000. Using the Powerful SABER Simulator for Simulation, Modeling, and Analysis of Power Systems, Circuits, and Devices. 7th Workshop on Computers in Power Electronics, p.172–176. [doi:10.1109/CIPE.2000.904711]

  • Haghdar, K., Shayanfar, H.A., Alavi, M.H.S., 2011. Selective Harmonics Elimination of Multi Level Inverters via Methods of GPS, SA and GA. Asia-Pacific Power and Energy Engineering Conf., p.1–5. [doi:10.1109/APPEEC.2011.5749056]

  • Jiang, S., Liang, J., Liu, Y., Yamazaki, K., Fujishima, M., 2005. Modeling and Cosimulation of FPGA-Based SVPWM Control for PMSM. 31st Annual Conf. of IEEE Industrial Electronics Society, p.1538–1543. [doi:10.1109/IECON.2005.1569133]

  • Lu, S., Corzine, K.A., Fikse, T.H., 2005. Advanced Control of Cascaded Multilevel Drives Based on P-Q Theory. IEEE Int. Conf. on Electric Machines and Drives, p.1415–1422. [doi:10.1109/IEMDC.2005.195907]

  • Nichols, K.G., Lin, J.T., Brown, A.D., Kazmierski, T.J., Zwolinski, M., 1993. Reliability of Circuit-Level Simulation. IEE Colloquium on Surviving Problems in Circuit Evaluation, p.1–4.

  • Nussbaumer, T., Heldwein, M.L., Gong, G., Kolar, J.W., 2005. Prediction Techniques Compensating Delay Times Caused by Digital Control of a Three-Phase Buck-Type PWM Rectifier System. 40th Annual Meeting of Industry Applications Conf., p.923–927. [doi:10.1109/IAS.2005.1518454]

  • Rabinovici, R., Baimel, D., Tomasik, J., Zuckerberger, A., 2010. Series space vector modulation for multi-level cascaded H-bridge inverters. IET Power Electron., 3(6): 843–857. [doi:10.1049/iet-pel.2009.0220]

    Article  Google Scholar 

  • Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E., 2010. A survey on neutral-point-clamped inverters. IEEE Tran. Ind. Electron., 57(7):2219–2230. [doi:10.1109/TIE.2009.2032430]

    Article  Google Scholar 

  • Selvaraj, J., Rahim, N.A., 2009. Multilevel inverter for grid-connected PV system employing digital PI controller. IEEE Trans. Ind. Electron., 56(1):149–158. [doi:10.1109/TIE.2008.928116]

    Article  Google Scholar 

  • Sepahvand, H., Ferdowsi, M., Corzine, K.A., 2011. Fault Recovery Strategy for Hybrid Cascaded H-Bridge Multi-level Inverters. 26th IEEE Applied Power Electronics Conf. and Exposition, p.1629–1633. [doi:10.1109/APEC.2011.5744813]

  • Tehrani, K.A., Rasoanarivo, I., Barrandon, L., Hamzaoui, M., Sargos, F.M., Rafiei, M., 2010. A New Current Control Using Two Hysteresis Modulation for a New 3-Level Inverter. 12th Int. Conf. on Optimization of Electrical and Electronic Equipment, p.652–658. [doi:10.1109/OPTIM.2010.5510355]

  • Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C., 2006. Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl., 153(5):750–762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Lj., Yang, T., Zhang, Dm. et al. A high performance simulation methodology for multilevel grid-connected inverters. J. Zhejiang Univ. - Sci. C 13, 544–551 (2012). https://doi.org/10.1631/jzus.C1100315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100315

Key words

CLC number

Navigation