Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 12, Issue 12, pp 1021–1030 | Cite as

A novel 3780-point FFT processor scheme for the time domain synchronous OFDM system

  • Ji-nan Leng
  • Lei Xie
  • Hui-fang Chen
  • Kuang Wang
Article

Abstract

The 3780-point FFT is a main component of the time domain synchronous OFDM (TDS-OFDM) system and the key technology in the Chinese Digital Multimedia/TV Broadcasting-Terrestrial (DMB-T) national standard. Since 3780 is not a power of 2, the classical radix-2 or radix-4 FFT algorithm cannot be applied directly. Hence, the Winograd Fourier transform algorithm (WFTA) and the Good-Thomas prime factor algorithm (PFA) are used to implement the 3780-point FFT processor. However, the structure based on WFTA and PFA has a large computational complexity and requires many DSPs in hardware implementation. In this paper, a novel 3780-point FFT processor scheme is proposed, in which a 60×63 iterative WFTA architecture with different mapping methods is imported to replace the PFA architecture, and an optimized CoOrdinate Rotation DIgital Computer (CORDIC) module is used for the twiddle factor multiplications. Compared to the traditional scheme, our proposed 3780-point FFT processor scheme reduces the number of multiplications by 45% at the cost of 1% increase in the number of additions. All DSPs are replaced by the optimized CORDIC module and ROM. Simulation results show that the proposed 3780-point FFT processing scheme satisfies the requirement of the DMB-T standard, and is an efficient architecture for the TDS-OFDM system.

Key words

3780 CoOrdinate Rotation DIgital Computer (CORDIC) Digital Multimedia/TV Broadcasting-Terrestrial (DMB-T) FFT Time domain synchronous OFDM (TDS-OFDM) Winograd Fourier transform algorithm (WFTA) 

CLC number

TN915.05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah, S., Haewoon, N., McDermot, M., Abraham, J., 2009. A High Throughput FFT Processor with No Multipliers. IEEE Int. Conf. on Computer Design, p.485–490. [doi:10.1109/ICCD.2009.5413113]Google Scholar
  2. Adiono, T., Purba, R.S., 2009. Scalable Pipelined CORDIC Architecture Design and Implementation in FPGA. Int. Conf. on Electrical Engineering and Informatics, p.646–649. [doi:10.1109/ICEEI.2009.5254736]Google Scholar
  3. Camarda, F., Prevotet, J.C., Nouvel, F., 2009. Implementation of a Reconfigurable Fast Fourier Transform Application to Digital Terrestrial Television Broadcasting. 19th Int. Conf. on Field Programmable Logic and Applications, p.353–358. [doi:10.1109/FPL.2009.5272266]Google Scholar
  4. Cheng, C., Parhi, K.K., 2007. Low-cost fast VLSI algorithm for discrete Fourier transform. IEEE Trans. Circ. Syst. I, 54(4):791–806. [doi:10.1109/TCSI.2006.888772]CrossRefMathSciNetGoogle Scholar
  5. Cheng, G., Su, K., 2010. A 3780-point FFT Algorithm and Its FPGA Implementation. Int. Symp. on Next Generation Electronics, p.231–233. [doi:10.1109/ISNE.2010.5669154]Google Scholar
  6. Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19(90):297–301. [doi:10.1090/S0025-5718-1965-0178586-1]CrossRefMATHMathSciNetGoogle Scholar
  7. Good, I.J., 1958. The interaction algorithm and practical Fourier series. J. R. Stat. Soc., 20(2):361–372.MATHMathSciNetGoogle Scholar
  8. Lakshmi, B., Dhar, A.S., 2008. Low Latency VLSI Architecture for the Radix-4 CORDIC Algorithm. IEEE Region 10 and 3rd Int. Conf. on Industrial and Information Systems, p.1–5. [doi:10.1109/ICIINFS.2008.4798377]Google Scholar
  9. Liu, M., Crussiere, M., Helard, J.F., Pasquero, O.P., 2008. Analysis and Performance Comparison of DVB-T and DTMB Systems for Terrestrial Digital TV. 11th IEEE Int. Conf. on Communication Systems, p.1399–1404. [doi:10.1109/ICCS.2008.4737413]Google Scholar
  10. Patterson, R.W., Mcclellan, J.H., 1978. Fixed-point error analysis of Winograd Fourier transform algorithms. IEEE Trans. Acoust. Speech Signal Process., 26(5):447–455. [doi:10.1109/TASSP.1978.1163134]CrossRefMATHGoogle Scholar
  11. SAC (Standardization Administration of the People’s Republic of China), 2006. Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System. Standards Press of China, Beijing, China (in Chinese).Google Scholar
  12. Silverman, H., 1977. An introduction to programming the Winograd Fourier transform algorithm (WFTA). IEEE Trans. Acoust. Speech Signal Process., 25(2):152–165. [doi:10.1109/TASSP.1977.1162924]CrossRefMATHGoogle Scholar
  13. Song, J., Yang, Z., Yang, L., Gong, K., Pan, C., Wang, J., Wu, Y., 2007. Technical review on Chinese Digital Terrestrial Television Broadcasting Standard and measurements on some working modes. IEEE Trans. Broadcast., 53(1):1–7. [doi:10.1109/TBC.2007.891835]CrossRefGoogle Scholar
  14. Volder, J.E., 1959. The CORDIC trigonometric computing technique. IEEE Trans. Electron. Comput., 8(3):330–334. [doi:10.1109/TEC.1959.5222693]CrossRefGoogle Scholar
  15. Winograd, S., 1976. On computing the discrete Fourier transform. PNAS, 73(4):1005–1006. [doi:10.1073/pnas.73.4.1005]CrossRefMATHMathSciNetGoogle Scholar
  16. Wu, C., Wang, R., Yen, C., 1994. Adder-based SIMD-systolic architectures and VLSI chip for computing the Winograd small FFT algorithms. Int. J. Electron., 76(6):1135–1149. [doi:10.1080/00207219408926023]CrossRefGoogle Scholar
  17. Xing, Q., Zhu, Q., Sun, S., 1996. Iterative Structure of Winograd FFT Algorithm. Conf. on Precision Electromagnetic Measurements, p.57–58. [doi:10.1109/CPEM.1996.546557]Google Scholar
  18. Yang, J., Wang, K., Zou, Z., 2007. DVB-S2 inner receiver design for broadcasting mode. J. Zhejiang Univ.-Sci. A, 8(1):28–35. [doi:10.1631/jzus.2007.A0028]CrossRefGoogle Scholar
  19. Yang, X., Du, W., Yang, Z., Lv, R., Wang, X., 2010. Hardware Design and Implementation of 3780 Points FFT Based on FPGA in DTTB. 4th Int. Conf. on Application of Information and Communication Technologies, p.1–4. [doi:10.1109/ICAICT.2010.5611806]Google Scholar
  20. Yang, Z., Hu, Y., Pan, C., Yang, L., 2002. Design of a 3780-point IFFT processor for TDS-OFDM. IEEE Trans. Broadcast., 48(1):57–61. [doi:10.1109/11.992857]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ji-nan Leng
    • 1
  • Lei Xie
    • 1
    • 2
  • Hui-fang Chen
    • 1
    • 2
  • Kuang Wang
    • 1
    • 2
  1. 1.Department of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory of Information Network TechnologyHangzhouChina

Personalised recommendations