Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 12, Issue 7, pp 608–613 | Cite as

A gain-flatness optimization solution for feedback technology of wideband low noise amplifiers

  • Zhen-hua Li
  • Bang-hong Guo
  • Zheng-jun Wei
  • Song-hao Liu
  • Nan Cheng
  • Jin-dong Wang
  • Jian-jun Guo
  • Long Yan
Article

Abstract

The S parameter expression of high-frequency models of the high electron mobility transistors (HEMTs) with basic feedback structure, especially the transmission gain S 21, is presented and analyzed. In addition, an improved feedback structure and its theory are proposed and demonstrated, in order to obtain a better gain-flatness through the mutual interaction between the series inductor and the parallel capacitor in the feedback loop. The optimization solution for the feedback amplifier can eliminate the negative impacts on transmission gain S 21 caused by things such as resonance peaks. Furthermore, our theory covers the shortage of conventional feedback amplifiers, to some extent. A wideband low-noise amplifier (LNA) with the improved feedback technology is designed based on HEMT. The transmission gain is about 20 dB with the gain variation of 1.2 dB from 100 MHz to 6 GHz. The noise figure is lower than 2.8 dB in the whole band and the amplifier is unconditionally stable.

Key words

Low-noise amplifier (LNA) Ultra-wideband HEMT Feedback Gain flatness 

CLC number

TN722.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, I., Bhartia, P., 2006. Microwave Solid State Circuit Design (2nd Ed.). Publishing House of Electronics Industry, Beijing, China, p.366–378 (in Chinese).Google Scholar
  2. Barras, D., Ellinger, F., Jackel, H., Hirt, W., 2004. A low supply voltage SiGe LNA for ultra-wideband frontends. IEEE Microw. Wirel. Compon. Lett., 14(10):469–471. [doi:10.1109/LMWC.2004.834556]CrossRefGoogle Scholar
  3. Fu, C.T., Kuo, C.N., Taylor, S.S., 2010. Low noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Trans. Microw. Theory Techn., 58(4):795–806. [doi:10.1109/TMTT.2010.2041570]CrossRefGoogle Scholar
  4. Gharpurey, R., 2004. A Broadband Low-Noise Front-End Amplifier for Ultra Wideband in 0.13-μm CMOS. Proc. IEEE Custom Integrated Circuits Conf., p.605–608. [doi:10.1109/CICC.2004.1358898]Google Scholar
  5. Gonzalez, G., 2006. Microwave Transistor Amplifiers Analysis and Design (2nd Ed.). Publishing House of Tsinghua University, Beijing, China, p.366–378 (in Chinese).Google Scholar
  6. Ismail, A., Abidi, A.A., 2004. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J. Sol.-State Circ., 39(12):2269–2277. [doi:10.1109/JSSC.2004.836344]CrossRefGoogle Scholar
  7. Kim, C.W., Kang, M.S., Anh, P.T., Kim, H.T., Lee, S.G., 2005. An ultra wideband CMOS low-noise amplifier for 3-5-GHz UWB system. IEEE J. Sol.-State Circ., 40(2): 544–547. [doi:10.1109/JSSC.2004.840951]CrossRefGoogle Scholar
  8. Lee, J., Cressler, J.D., 2005. A 3–10 GHz SiGe Resistive Feedback Low Noise Amplifier for UWB Applications. IEEE Radio Frequency Integrated Circuits Symp., p.545–548. [doi:10.1109/RFIC.2005.1489871]Google Scholar
  9. Li, Q., Zhang, Y.P., 2007. A 1.5-V 2-9.6-GHz inductorless low-noise amplifier in 0.13-μm CMOS. IEEE Trans. Microw. Theory Techn., 55(10):2015–2023. [doi:10.1109/TMTT.2007.905495]CrossRefGoogle Scholar
  10. Park, Y., Lee, C.H., Cressler, J.D., Laskar, J., Joseph, A., 2005. A Very Low Power SiGe LNA for UWB Application. IEEE MTT-S Int. Microwave Symp., p.1041–1044. [doi:10.1109/MWSYM.2005.1516847]Google Scholar
  11. Roy, S., Foerster, J.R., Somayazulu, V.S., Leeper, D.G., 2004. Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity. Proc. IEEE, 92(2):295–311. [doi:10.1109/JPROC.2003.821910]CrossRefGoogle Scholar
  12. Scholtz, R.A., Weaver, R., Homier, E., Lee, J., Hilmes, P., Taha, A., Wilson, R., 2000. UWB Radio Deployment Challenges. 11th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.620–625. [doi:10.1109/PIMRC.2000.881497]Google Scholar
  13. Wang, H., Dow, G.S., Allen, B.R., Ton, T.N., Tan, K.L., Chang, K.W., Chen, T.H., Berenz, J., Lin, T.S., Liu, P.H., et al., 1992. High-performance in W-band monolithic pseudomorphic InGaAs HEMT LNA’s and design/analysis methodology. IEEE Trans. Microw. Theory Techn., 40(3): 417–428. [doi:10.1109/22.121716]CrossRefGoogle Scholar
  14. Win, M.Z., Scholtz, R.A., 1998. Impulse radio: how it works. IEEE Commun. Lett., 2(2):36–38. [doi:10.1109/4234.660796]CrossRefGoogle Scholar
  15. Xie, H.Y., Zhang, W.R., Li, J., Shen, P., Huang, Y.W., Huang, L., Hu, N., 2009. Study of Feedback Technology for Gain Flatness of UWB LNA. 3rd IEEE Int. Symp. on Microwave Antenna, Propagation and EMC Technologies for Wireless Communications, p.466–469. [doi:10.1109/MAPE.2009.5355634]Google Scholar
  16. Zhan, J.H.C., Taylor, S.S., 2006. A 5GHz Resistive-Feedback CMOS LNA for Low-Cost Multi-standard Applications. IEEE Int. Solid-State Circuits Conf., p.721–730. [doi:10.1109/ISSCC.2006.1696111]Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhen-hua Li
    • 1
  • Bang-hong Guo
    • 1
  • Zheng-jun Wei
    • 1
  • Song-hao Liu
    • 1
  • Nan Cheng
    • 1
  • Jin-dong Wang
    • 1
  • Jian-jun Guo
    • 1
  • Long Yan
    • 1
  1. 1.Key Laboratory of Photonic Information Technology of Guangdong Higher Education Institutes, SIPSE & LQITSouth China Normal UniversityGuangzhouChina

Personalised recommendations