Solving infinite horizon nonlinear optimal control problems using an extended modal series method

  • Amin Jajarmi
  • Naser Pariz
  • Sohrab Effati
  • Ali Vahidian Kamyad
Article

Abstract

This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs). In this approach, a nonlinear two-point boundary value problem (TPBVP), derived from Pontryagin’s maximum principle, is transformed into a sequence of linear time-invariant TPBVPs. Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series. Hence, to obtain the optimal solution, only the techniques for solving linear ordinary differential equations are employed. An efficient algorithm is also presented, which has low computational complexity and a fast convergence rate. Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP. The results not only demonstrate the efficiency, simplicity, and high accuracy of the suggested approach, but also indicate its effectiveness in practical use.

Key words

Infinite horizon nonlinear optimal control problem Pontryagin’s maximum principle Two-point boundary value problem Extended modal series method 

CLC number

TP13 

References

  1. Abu-Khalaf, M., Huang, J., Lewis, F.L., 2006. Nonlinear H 2/H Constrained Feedback Control: a Practical Design Approach Using Neural Networks. Springer-Verlag, New York.Google Scholar
  2. Adomian, G., Adomian, G.E., 1984. A global method for solution of complex systems. Math. Model., 5(4):251–263. [doi:10.1016/0270-0255(84)90004-6]MathSciNetMATHCrossRefGoogle Scholar
  3. Arnold, V.I., 1992. Ordinary Differential Equations. Springer-Verlag, New York.Google Scholar
  4. Ascher, U.M., Mattheij, R.M.M., Russel, R.D., 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia.MATHGoogle Scholar
  5. Banks, S.P., Dinesh, K., 2000. Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems. Ann. Oper. Res., 98(1/4):19–44. [doi:10.1023/A:1019279617898]MathSciNetMATHCrossRefGoogle Scholar
  6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 2006. Nonlinear Programming Theory and Algorithms (3rd Ed.). John Wiley & Sons, New York. [doi:10.1002/0471787779]MATHCrossRefGoogle Scholar
  7. Beard, R.W., Saridis, G.N., Wen, J.T., 1997. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 33(12):2159–2177. [doi:10.1016/S0005-1098(97)00128-3]MathSciNetMATHCrossRefGoogle Scholar
  8. Bellman, R., 1952. On the theory of dynamic programming. PNAS, 38(8):716–719. [doi:10.1073/pnas.38.8.716]MATHCrossRefGoogle Scholar
  9. Bryson, A.E., 2002. Applied Linear Optimal Control: Examples and Algorithms. Cambridge University Press, UK.Google Scholar
  10. Cimen, T., 2008. State-Dependent Riccati Equation (SDRE) Control: a Survey. 17th IFAC World Congress. [doi:10.3182/20080706-5-KR-1001.00635]Google Scholar
  11. Garrard, W.L., Jordan, J.M., 1977. Design of nonlinear automatic flight control systems. Automatica, 13(5):497–505. [doi:10.1016/0005-1098(77)90070-X]MATHCrossRefGoogle Scholar
  12. Huang, J., Lin, C.F., 1995. Numerical approach to computing nonlinear H-infinity control laws. J. Guid. Control Dyn., 18(5):989–994. [doi:10.2514/3.21495]MATHCrossRefGoogle Scholar
  13. Hwang, I., Li, J., Du, D., 2009. Differential transformation and its application to nonlinear optimal control. J. Dyn. Syst. Meas. Control, 131(5):051010–11. [doi:10.1115/1.3155013]CrossRefGoogle Scholar
  14. Junkins, J.L., Turner, J.D., 1986. Optimal Spacecraft Rotational Maneuvers. Elsevier, Amsterdam.Google Scholar
  15. Khatibi, M., Shanechi, H.M., 2011. Using modal series to analyze the transient response of oscillators. Int. J. Circ. Theor. Appl., 39(2):127–134. [doi:10.1002/cta.621]MATHCrossRefGoogle Scholar
  16. Lyapunov, A.M., 1892. General Problem on Stability of Motion. Fuller, A.T., translator, 1992. Taylor & Francis, London (in Russian).Google Scholar
  17. Manousiouthakis, V., Chmielewski, D.J., 2002. On constrained infinite-time nonlinear optimal control. Chem. Eng. Sci., 57(1):105–114. [doi:10.1016/S0009-2509(01)00359-1]CrossRefGoogle Scholar
  18. McCaffrey, D., Banks, S.P., 2005. Geometric existence theory for the control-affine nonlinear optimal regulator. J. Math. Anal. Appl., 305(1):380–390. [doi:10.1016/j.jmaa.2004.12.017]MathSciNetMATHCrossRefGoogle Scholar
  19. Murdock, J.A., 1999. Perturbations: Theory and Methods. Classics in Applied Mathematics. SIAM, Philadelphia.Google Scholar
  20. Notsu, T., Konishi, M., Imai, J., 2008. Optimal water cooling control for plate rolling. Int. J. Innov. Comput. Inform. Control, 4(12):3169–3181.Google Scholar
  21. Pariz, N., 2001. Analysis of Nonlinear System Behavior: the Case of Stressed Power Systems. PhD Thesis, Department of Electrical Engineering, Ferdowsi University of Mashhad, Iran.Google Scholar
  22. Pariz, N., Shanechi, H.M., Vaahedi, E., 2003. Explaining and validating stressed power systems behavior using modal series. IEEE Trans. Power Syst., 18(2):778–785. [doi:10. 1109/TPWRS.2003.811307]CrossRefGoogle Scholar
  23. Pontryagin, L.S., 1959. Optimal control processes. Usp. Mat. Nauk, 14:3–20 (in Russian).MathSciNetGoogle Scholar
  24. Shanechi, H.M., Pariz, N., Vahedi, E., 2003. General nonlinear modal representation of large scale power systems. IEEE Trans. Power Syst., 18(3):1103–1109. [doi:10.1109/TPWRS.2003.814883]CrossRefGoogle Scholar
  25. Tang, G.Y., 2005. Suboptimal control for nonlinear systems: a successive approximation approach. Syst. Control Lett., 54(5):429–434. [doi:10.1016/j.sysconle.2004.09.012]MATHCrossRefGoogle Scholar
  26. Tang, G.Y., Qu, H.P., Gao, Y.M., 2002. Sensitivity approach of suboptimal control for a class of nonlinear systems. J. Ocean Univ. Qingdao, 32(4):615–620 (in Chinese).Google Scholar
  27. Tang, L., Zhao, L.D., Guo, J., 2009. Research on pricing policies for seasonal goods based on optimal control theory. ICIC Expr. Lett., 3(4B):1333–1338.Google Scholar
  28. Wu, F.X., Wu, H., Han, Z.X., Gan, D.Q., 2007. Validation of power system non-linear modal analysis methods. Electr. Power Syst. Res., 77(10):1418–1424. [doi:10.1016/j.epsr.2006.10.016]CrossRefGoogle Scholar
  29. Yousefi, S.A., Dehghan, M., Lotfi, A., 2010. Finding the optimal control of linear systems via He’s variational iteration method. Int. J. Comput. Math., 87(5):1042–1050. [doi:10.1080/00207160903019480]MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amin Jajarmi
    • 1
  • Naser Pariz
    • 1
  • Sohrab Effati
    • 2
  • Ali Vahidian Kamyad
    • 2
  1. 1.Advanced Control and Nonlinear Laboratory, Department of Electrical EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Department of Applied Mathematics, Faculty of Mathematical SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations