Journal of Zhejiang University SCIENCE C

, Volume 12, Issue 6, pp 515–522 | Cite as

Partial discharge diagnostics in wind turbine insulation

Review

Abstract

The purpose of this paper is to review work undertaken on partial discharges and their influence on the insulation of wind turbines. No matter whether partial discharges can be considered as the main cause of deterioration of the insulation material, the initial cause of failure or not but an indication of the material degradation, there is no doubt that they are intimately linked to the aging of machine insulation. Material degradation can be detected by non-destructive techniques (e.g., partial discharge measurements, change of tan δ) or by destructive techniques, such as by cutting small pieces of the insulating material and by putting them under the scrutiny of the scanning electron microscope (SEM). Wind generators are a modern subject of research, especially in view of the growing demands of electric energy worldwide and the problems facing the environment all over the globe. Wind turbines are a novel field of research regarding partial discharge diagnostics since they are subjected to a variety of aging factors, which are different from conventional turbines. In this respect, particular attention should be paid to the multi-factor stressing of insulation and their consequences on the partial discharges.

Key words

Partial discharges Rotating machine insulation Wind turbines 

CLC number

TM8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartnikas, R., 1987. A commentary on partial discharge measurement and detection. IEEE Trans. Electr. Insul., 22(5):629–653. [doi:10.1109/TEI.1987.299011]CrossRefGoogle Scholar
  2. Böning, W., 1963. Luftgehalt und luftspaltverteilung geschichteter dielektrika. Arch. Elektrotech., 48(2):85–96 (in German). [doi:10.1007/BF01419337]CrossRefGoogle Scholar
  3. Bradwell, A., 1983. Electrical Insulation. Peter Peregrinus Ltd., London, UK.Google Scholar
  4. Brancato, E.L., 1992. Estimation of lifetime expectancies of motors. IEEE Electr. Insul. Mag., 8(3):5–13. [doi:10.1109/57.139066]CrossRefGoogle Scholar
  5. Bruetsch, R., 2004. Insulating Systems for Wind Turbine Generators. INDUCTICA Technical Conf., p.1–16.Google Scholar
  6. Bruetsch, R., Weyl, P., 2002. A New Winding Wire for Inverter Driven Motors. 9th INSUCON Int. Electrical Insulation Conf., p.1–5.Google Scholar
  7. Bruning, A.M., 1984. Design of Electrical Insulation Systems. PhD Thesis, Faculty of the Graduate School, University of Missouri-Columbia.Google Scholar
  8. Christodoulou, A., Weddleton, D., Sattinger, S., 1998. Dynamic Bending Tests—a Method to Evaluate the Ability of Stator Coil Insulation to Accommodate 3-Phase Short Circuits. Conf. Record of IEEE Int. Symp. on Electrical Insulation, p.282–287. [doi:10.1109/ELINSL.1998.704720]Google Scholar
  9. Danikas, M.G., 1995. Ageing properties of silicone rubber materials used in high voltage composite insulators. J. Electr. Electron. Eng., 15:193–202.Google Scholar
  10. Danikas, M.G., 1999. Polymer outdoor insulators. Acta Electrotehn. Napoc., 40:3–10.Google Scholar
  11. Danikas, M.G., 2001. Partial discharge behaviour of two (or more) adjacent cavities in polyethylene samples. J. Electr. Eng., 52(1–2):36–39.Google Scholar
  12. Danikas, M.G., Karlis, A.D., 2006a. On the use of neural networks in recognizing sources of partial discharges in electrical machine insulation: a short review. Int. Rev. Electr. Eng., 1(2):277–285.Google Scholar
  13. Danikas, M.G., Karlis, A.D., 2006b. Diagnostic techniques in rotating machine insulation: a diagnostic technique for model stator bars based on the maximum partial discharge magnitude. Electr. Power Compon. Syst., 34(8):905–916. [doi:10.1080/15325000600561613]CrossRefGoogle Scholar
  14. Danikas, M.G., Karlis, A.D., 2008. Maximum partial discharge magnitude hysteresis curves as a diagnostic technique for model stator bars. IEEE Trans. Ind. Appl., 44(5):1552–1558. [doi:10.1109/TIA.2008.2002214]CrossRefGoogle Scholar
  15. Danikas, M.G., Nelson, J.K., 1993. Assessment of deterioration in epoxy/mica machine insulation. IEEE Trans. Electr. Insul., 28(2):303–305. [doi:10.1109/14.212256]CrossRefGoogle Scholar
  16. Danikas, M.G., Tanaka, T., 1994. Aging and related phenomena in modern electric power systems. IEEE Trans. Dielectr. Electr. Insul., 1(3):548–549. [doi:10.1109/94.300301]CrossRefGoogle Scholar
  17. Dean, R.J., 2009. Investigation of Failures in Marine Environments. Available from http://www.era.co.uk/Docs/ECS/Marine_Forensics_Paper_Bob_Dean_ERA_Technology.pdf
  18. Devins, J.C., 1984. The physics of partial discharges in solid dielectrics. IEEE Trans. Electr. Insul., 19(5):475–495. [doi:10.1109/TEI.1984.298770]CrossRefGoogle Scholar
  19. Dinkhauser, V., Fuchs, F.W., 2009. Detection of Rotor Turn-to-Turn Faults in Doubly-Fed Induction Generators in Wind Energy Plants by Means of Observers. 13th Int. European Power Electronics Conf. and Exhibition, p.1–10.Google Scholar
  20. Eriksson, S., Bernhoff, H., Leijon, M., 2008. Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev., 12(5):1419–1434. [doi:10.1016/j.rser.2006.05.017]CrossRefGoogle Scholar
  21. Florkowski, M., Furgal, J., 2004. Detection of winding faults in electrical machines using the frequency response analysis method. IEE Proc.-Meas. Sci. Technol., 15:2067–2074. [doi:10.1088/0957-0233/15/10/017]Google Scholar
  22. Florkowski, M., Furgal, J., 2005. A high-frequency method for determining winding faults in transformers and electrical machines. Rev. Sci. Instrum., 76(11):114701-1–114701-6. [doi:10.1063/1.2130942]CrossRefGoogle Scholar
  23. Fort, E., 1990. Rotating machine insulation. IEEE Trans. Electr. Insul., 25(1):137–140. [doi:10.1109/14.45240]MathSciNetCrossRefGoogle Scholar
  24. Gallagher, T.J., Pearmain, A.J., 1983. High Voltage: Measurement, Testing and Design. John Wiley and Sons, New York.Google Scholar
  25. Gao, G., Chen, W., 2007. Design Considerations and Qualifications of the Insulation System for Double Fed Induction Wind Generator. Iris Rotating Machine Conf., p.1–4. [doi:10.1155/2007/76476]Google Scholar
  26. Gorur, R.S., 1991. High voltage outdoor insulation technology. Control Dynam. Syst., 44:131–191.Google Scholar
  27. Gulski, E., Zielonka, A., 1996. Application of Digital Partial Discharge Measuring Techniques for the Diagnosis of High Voltage Generator Insulation. Conf. Record of IEEE Int. Symp. on Electrical Insulation, p.255–258. [doi:10.1109/ELINSL.1996.549330]Google Scholar
  28. Gulski, E., Smit, J., Brooks, R., Turner, M., 1999. Experiences with digital analysis of discharges in high voltage components. IEEE Electr. Insul. Mag., 15(3):15–24. [doi:10.1109/57.768532]CrossRefGoogle Scholar
  29. Hutter, W., 1992. Partial discharges: part XII. partial discharge detection in rotating electrical machines. IEEE Electr. Insul. Mag., 8(3):21–32. [doi:10.1109/57.139068]MathSciNetCrossRefGoogle Scholar
  30. ISET, 2005. Advanced Maintenance and Repair for Offshore Wind Farms Using Fault Prediction and Condition Monitoring Techniques (OffshoreM&R). ISET Final Report, Funded by the European Commission, DG TREN under the FP5 Contract NNE5/2001/710.Google Scholar
  31. Kashisha, M.A., Tootaghaj, D.Z., Jamshidi, D., 2009. Partial discharge source classification and de-noising in rotating machines using discrete wavelet transform and directional coupling capacitor. J. Electromagn. Anal. Appl., 2:92–96. [doi:10.4236/jemaa.2009.12014]Google Scholar
  32. Kelen, A., 1967. Studies on partial discharges on solid dielectrics—a contribution to the discharge resistance testing of insulating materials. Acta Polytechn. Scand. Electr. Eng. Ser., 16:138.Google Scholar
  33. Kelen, A., 1976. The Functional Testing of HV Generator Stator Insulation. Report 15-03, CIGRE, p.14.Google Scholar
  34. Kelen, A., 1990. Reflections on the long-term performance of electrical insulation. Rev. Gen. Electr., 8:8–13.Google Scholar
  35. Kelen, A., 1995. Trends in PD diagnostics. When new options proliferate, so do old and new problems. IEEE Trans. Dielectr. Electr. Insul., 2(4):529–534. [doi:10.1109/94.407018]CrossRefGoogle Scholar
  36. Kelen, A., Danikas, M.G., 1995. Evidence and presumption in PD diagnostics. IEEE Trans. Dielectr. Electr. Insul., 2(5):780–795. [doi:10.1109/94.469975]CrossRefGoogle Scholar
  37. Kemp, I.J., Zhou, C., 1996. Measurement Strategies for PD Testing and Pulse Propagation in Stator Windings. Conf. Record of IEEE Symp. on Electrical Insulation, p.214–217. [doi:10.1109/ELINSL.1996.549320]Google Scholar
  38. Kheirmand, A., 2002. Partial Discharges in Large Rotating Machines-Continuous On-line Monitoring and Localization Based on a New Developed Technique. PhD Thesis, Chalmers University of Technology, Goeteborg, Sweden.Google Scholar
  39. Kheirmand, A., Leijon, M., Gubanski, S.M., 2004. Advances in on-line monitoring and localization of partial discharges in large rotating machines. IEEE Trans. Energy Conv., 19(1):53–59. [doi:10.1109/TEC.2003.819103]CrossRefGoogle Scholar
  40. Kim, Y.J., Nelson, J.K., 1992. Assessment of deterioration in epoxy/mica machine insulation. IEEE Trans. Electr. Insul., 27(5):1026–1039. [doi:10.1109/14.256478]CrossRefGoogle Scholar
  41. Kuffel, E., Zaengl, W.S., 1984. High Voltage Engineering: Fundamentals. Pergamon Press, Oxford, UK.Google Scholar
  42. Kuffel, E., Zaengl, W.S., Kuffel, J., 2000. High Voltage Engineering Fundamentals. Newnes, Oxford, UK.Google Scholar
  43. Kung, P., 2009. Condition Monitoring Solutions for the Wind Turbines. Canadian Machinery Vibration Association Seminar. Available from http://www.qpscom.com/pages/Condition%20monitoring%20solutions%20for%20wind%20turbines.pdf
  44. Kurtz, M., Lyles, J.F., 1979. Generator insulation diagnostic testing. IEEE Trans. Power Appar. Syst., 98(5):1596–1603. [doi:10.1109/TPAS.1979.319475]CrossRefGoogle Scholar
  45. Li, J., Si, W., Yao, X., Li, Y., 2009. Partial discharge characteristics over differently aged oil/pressboard interfaces. IEEE Trans. Dielectr. Electr. Insul., 16(6):1640–1647. [doi:10.1109/TDEI.2009.5361584]CrossRefGoogle Scholar
  46. Martinez-Tarifa, J.M., 2005. Transient Voltage Distribution along LV Motor Windings Fed with PWM Converters Insulation Ageing Analysis. PhD Thesis, University Calros III of Madrid, Spain.Google Scholar
  47. Mason, J.H., 1978. Discharges. IEEE Trans. Electr. Insul., 13(4):211–238. [doi:10.1109/TEI.1978.298074]CrossRefGoogle Scholar
  48. Miller, R., Hogg, W.K., Black, I.A., 1982. Measuring Techniques for Identifying Partial Discharges in Stator Windings of Electrical Machines. IEEE Conf. on Dielectric Material Measurement Application, p.221–234.Google Scholar
  49. Muljadi, E., Yildirim, D., Batan, T., Butterfield, C.P., 1999. Understanding the Unbalanced-Voltage Problem in Wind Turbine Generation. Conf. Record of the IEEE Industry Applications Society Annual Meeting, p.1359–1365. [doi:10.1109/IAS.1999.801678]Google Scholar
  50. Nelson, J.K., Azizi-Ghannad, S., Li, H., 2000. Theory and application of dynamic aging for life estimation in machine insulation. IEEE Trans. Dielectr. Electr. Insul., 7(6):773–782. [doi:10.1109/94.891988]CrossRefGoogle Scholar
  51. Paoletti, G., Golubev, A., 1999a. Partial Discharge Theory and Technologies Related to Traditional Testing Methods of Large Rotating Apparatus. Conf. Record of the IEEE 34th Industry Applications Society Annual Meeting, p.967–981. [doi:10.1109/IAS.1999.801624]Google Scholar
  52. Paoletti, G., Golubev, A., 1999b. Partial Discharge Theory and Applications to Electrical Systems. Conf. Record of Pulp and Paper Industry Technical Conf., p.124–138. [doi:10.1109/PAPCON.1999.779355]Google Scholar
  53. Patsch, R., Benzerouk, D., 2003. Analysis of Partial Discharges in Stator Windings. Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, p.641–644. [doi:10.1109/CEIDP.2003.1254936]Google Scholar
  54. Pearmain, A.J., Danikas, M.G., 1987. A study of the behavior of a uniaxially oriented polyethylene tape/oil insulating system subjected to electrical and thermal stresses. IEEE Trans. Electr. Insul., 22(4):373–382. [doi:10.1109/TEI.1987.298896]CrossRefGoogle Scholar
  55. Perisse, F., Werynski, P., Roger, D., 2007. A new method for AC machine turn insulation diagnostic based on high frequency resonances. IEEE Trans. Dielectr. Electr. Insul., 14(5):1308–1315. [doi:10.1109/TDEI.2007.4339494]CrossRefGoogle Scholar
  56. Ramesh Babu, J., Jithesh, S.V., 2008. Breakdown risks in wind energy turbines. J. Insur. Risk Manag. Natl. Insur. Acad., III(3):9–18.Google Scholar
  57. Stone, G.S., Bragoszewski, J., Campbell, S.R., Lloyd, B.A., 1996. Development of a Practical Continuous On-line Partial Discharge Monitor for Generators and Motors. Conf. Record of IEEE Int. Symp. on Electrical Insulation, p.206–209. [doi:10.1109/ELINSL.1996.549318]Google Scholar
  58. Suwarno, Suzuoki, Y., Mizutani, T., 1996. Pulse-Sequence Analysis of Partial Discharges in a Void and Electrical Treeing. Conf. Record of IEEE Int. Symp. on Electrical Insulation, p.130–133. [doi:10.1109/ELINSL.1996.549300]Google Scholar
  59. Tanaka, T., Okamoto, T., Nakanishi, K., Miyamoto, T., 1993. Aging and related phenomena in modern electric power systems. IEEE Trans. Electr. Insul., 28(5):826–844. [doi:10.1109/14.237744]CrossRefGoogle Scholar
  60. Warren, V., Stone, G., 1998. Recent developments in diagnostic testing of stator windings. IEEE Electr. Insul. Mag., 14(5):16–24. [doi:10.1109/57.714643]CrossRefGoogle Scholar
  61. Werynski, P., Roger, D., Corton, R., Brudny, J.F., 2006. Proposition of a new method for in-service monitoring of the aging of stator winding insulation in AC motors. IEEE Trans. Energy Conv., 21(3):673–681. [doi:10.1109/TEC.2006.875465]CrossRefGoogle Scholar
  62. Wilson, A., Jackson, R.J., Wang, N., 1985. Discharge detection techniques for stator winding. IEE Proc. B Electr. Power Appl., 132(5):234–244. [doi:10.1049/ip-b.1985.0034]CrossRefGoogle Scholar
  63. Zalis, K., 2000. Using of expert systems in electrodiagnostics of large electrical machines. Acta Polytechn., 40(3):67–75.Google Scholar
  64. Zhou, Y., Dix, G.I., Quaife, P.W., 1996. Insulation Condition Monitoring and Testing for Large Electrical Machines. Conf. Record of IEEE Int. Symp. on Electrical Insulation, p.239–242. [doi:10.1109/ELINSL.1996.549326]Google Scholar
  65. Zhou, Y., Younsi, A., Salem, S.R., Longwell, R.I., 2009. Method and Apparatus for Detecting Partial Discharges in Electrical Systems. Available from http://www.faqs.org/patents/app/20090248328

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Power Systems Lab, Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Electrical Machines Lab, Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations