Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 12, Issue 1, pp 1–16 | Cite as

Direct adaptive regulation of unknownnonlinear systems with analysis of themodel order problem

  • Dimitrios Theodoridis
  • Yiannis Boutalis
  • Manolis Christodoulou
Article

Abstract

A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper, paying special attention to the analysis of the model order problem. The method uses a neurofuzzy (NF) modeling of the unknown system, which combines fuzzy systems (FSs) with high order neural networks (HONNs). We propose the approximation of the unknown system by a special form of an NF-dynamical system (NFDS), which, however, may assume a smaller number of states than the original unknown model. The omission of states, referred to as a model order problem, is modeled by introducing a disturbance term in the approximating equations. The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties. An adaptive modification method, termed ‘parameter hopping’, is incorporated into the weight estimation algorithm so that the existence and boundedness of the control signal are always assured. The applicability and potency of the method are tested by simulations on well known benchmarks such as ‘DC motor’ and ‘Lorenz system’, where it is shown that it performs quite well under a reduced model order assumption. Moreover, the proposed NF approach is shown to outperform simple recurrent high order neural networks (RHONNs).

Key words

Neuro-fuzzy systems Direct adaptive regulation Model order problems Parameter hopping 

CLC number

TP183 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutalis, Y.S., Theodoridis, D.C., Christodoulou, M.A., 2009. A new neuro FDS definition for indirect adaptive control of unknown nonlinear systems using a method of parameter hopping. IEEE Trans. Neur. Networks, 20(4):609–625. [doi:10.1109/TNN.2008.2010772]CrossRefGoogle Scholar
  2. Chemachema, M., Belarbi, K., 2007. Robust direct adaptive controller for a class of nonlinear systems based on neural networks and fuzzy logic system. Int. J. Artif. Intell. Tools, 16(3):553–560. [doi:10.1142/S0218213007003412]CrossRefGoogle Scholar
  3. Christodoulou, M.A., Theodoridis, D.C., Boutalis, Y.S., 2007. Building Optimal Fuzzy Dynamical Systems Description Based on Recurrent Neural Network Approximation. Conf. of Networked Distributed Systems for Intelligent Sensing and Control, p.82–93.Google Scholar
  4. Diao, Y., Passino, K.M., 2002. Adaptive neural/fuzzy control for interpolated nonlinear systems. IEEE Trans. Fuzzy Syst., 10(5):583–595. [doi:10.1109/TFUZZ.2002.803493]CrossRefGoogle Scholar
  5. Ge, S.S., Jing, W., 2002. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Trans. Neur. Networks, 13(6):1409–1419. [doi:10.1109/TNN.2002.804306]CrossRefGoogle Scholar
  6. Haddad, W., Hayakawaa, T., Chellaboina, V., 2003. Robust adaptive control for nonlinear uncertain systems. Automatica, 39(3):551–556. [doi:10.1016/S0005-1098(02)00244-3]CrossRefMATHMathSciNetGoogle Scholar
  7. Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neur. Networks, 2(5):359–366. [doi:10.1016/0893-6080(89)90020-8]CrossRefGoogle Scholar
  8. Ioannou, P., Fidan, B., 2006. Adaptive Control Tutorial. SIAM.Google Scholar
  9. Kim, Y.T., Bien, Z.Z., 2004. Robust adaptive fuzzy control in the presence of external disturbance and approximation error. Fuzzy Sets Syst., 148(3):377–393. [doi:10.1016/j.fss.2004.02.006]CrossRefMATHMathSciNetGoogle Scholar
  10. Li, C.H., Zhu, X.J., Cao, G.Y., Hu, W.Q., Sui, S., Hu, M.R., 2009. A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks. J. Zhejiang Univ.-Sci. A, 10(2):263–270. [doi: 10.1631/jzus.A0820128]CrossRefMATHGoogle Scholar
  11. Lin, C.T., 1995. A neural fuzzy control system with structure and parameter learning. Fuzzy Sets Syst., 70(2–3):183–212. [doi:10.1016/0165-0114(94)00216-T]CrossRefGoogle Scholar
  12. Mamdani, E., 1976. Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Mach. Stud., 8(6):669–678. [doi:10.1016/S0020-7373(76)80028-4]CrossRefMATHGoogle Scholar
  13. Michel, A.N., Miller, R.K., 1977. Qualitative Analysis of Large Scale Dynamic Systems. Academic Press, New York.Google Scholar
  14. Nounou, H.N., Passino, K.M., 2004. Stable auto-tuning of adaptive fuzzy/neural controllers for nonlinear discretetime systems. IEEE Trans. Fuzzy Syst., 12(1):70–83. [doi:10.1109/TFUZZ.2003.822680]CrossRefGoogle Scholar
  15. Ordonez, R., Passino, K.M., 2001. Adaptive control for a class of nonlinear systems with time-varying structure. IEEE Trans. Autom. Control, 46(1):152–155. [doi:10.1109/9.898709]CrossRefMATHMathSciNetGoogle Scholar
  16. Passino, K.M., Yurkovich, S., 1998. Fuzzy Control. Addison-Wesley, Menlo Park, CA.Google Scholar
  17. Rovithakis, G.A., Christodoulou, M.A., 2000. Adaptive Control with Recurrent High Order Neural Networks (Theory and Industrial Applications). In: Grimble, M. (Ed.), Advances in Industrial Control. Springer Verlag London Limited.Google Scholar
  18. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A., 2009a. Direct adaptive control of unknown nonlinear systems using a new neuro-fuzzy method together with a novel approach of parameter hopping. Kybernetica, 45(3):349–386.MATHMathSciNetGoogle Scholar
  19. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A., 2009b. A New Neuro-Fuzzy Dynamical System Definition Based on High Order Neural Network Function Approximators. European Control Conf., p.3305–3310.Google Scholar
  20. Tong, S., Chai, T., 1999. Direct adaptive control and robust analysis for unknown multivariable nonlinear systems with fuzzy logic systems. Fuzzy Sets Syst., 106(3):309–319. [doi:10.1016/S0165-0114(97)00246-7]CrossRefMATHMathSciNetGoogle Scholar
  21. Wang, L., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, NJ.Google Scholar
  22. Yang, Y., 2004. Direct robust adaptive fuzzy control (DRAFC) for uncertain nonlinear systems using small gain theorem. Fuzzy Sets Syst., 151(1):79–97. [doi:10.1016/j.fss.2004.05.010]CrossRefGoogle Scholar
  23. Yeap, T.H., Ahmed, N.U., 1994. Feedback control of chaotic systems. Dyn. Control, 4(1):97–114. [doi:10.1007/BF02115741]CrossRefMATHMathSciNetGoogle Scholar
  24. Zhang, J.H., Zhang, S.L., Liu, M.Q., 2007. Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks. J. Zhejiang Univ.-Sci. A, 8(12):1912–1920. [doi: 10.1631/jzus.2007.A1912]CrossRefMATHGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dimitrios Theodoridis
    • 1
    • 2
  • Yiannis Boutalis
    • 1
    • 3
  • Manolis Christodoulou
    • 4
    • 5
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Department of Industrial InformaticsTechnological Education Institute of KavalaKavalaGreece
  3. 3.Chair of Automatic ControlUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Department of Electronic and Computer EngineeringTechnical University of CreteChaniaGreece
  5. 5.Dipartimento di Automatica et InformaticaPolitecnico di TorinoTorinoItalia

Personalised recommendations