Journal of Zhejiang University SCIENCE C

, Volume 12, Issue 3, pp 250–262

# Calculating the transient behavior of grounding systems using inverse Laplace transform

Article

## Abstract

This paper deals with a unified and novel approach for analyzing the frequency and time domain performance of grounding systems. The proposed procedure is based on solving the full set of Maxwell’s equations in the frequency domain, and enables the exact computation of very near fields at the surface of the grounding grid, as well as far fields, by simple and accurate closed-form expressions for solving Sommerfeld integrals. In addition, the soil ionization is easily considered in the proposed method. The frequency domain responses are converted to the time domain by fast inverse Laplace transform. The results are validated and have shown acceptable accuracy.

### Key words

Electromagnetic field Near-field computation High frequency performance Soil ionization Grounding system Fast inverse Laplace transform

O441.5

## Preview

### References

1. Andolfato, R., Bernardi, L., Fellin, L., 2000. Aerial and grounding systems analysis by the shifting complex images method. IEEE Trans. Power Del., 15(3):1001–1009. [doi:10.1109/61.871366]
2. Arnautovski-Toseva, V., Grcev, L., 2004. Electromagnetic analysis of horizontal wire in two-layered soil. J. Comput. Appl. Math., 168(1–2):21–29. [doi:10.1016/j.cam.2003.05.014]
3. Cidras, J., Otero, A.F., Garrido, C., 2000. Nodal frequency analysis of grounding systems considering the soil ionization effect. IEEE Trans. Power Del., 15(1):103–107. [doi:10.1109/61.847236]
4. Doric, V., Poljak, D., Roje, V., 2004. Transient analysis of the grounding electrode based on the wire antenna theory. Eng. Anal. Bound. Elem., 28(7):801–807. [doi:10.1016/j.enganabound.2003.11.001]
5. Gao, Y.Q., He, J.L., Zeng, R., Liang, X.D., 2002. Impulse Transient Characteristic of Grounding Grid. 3rd Int. Symp. on Electromagnetic, p.276–280. [doi:10.1109/ELMAGC.2002.1179385]Google Scholar
6. Geri, A., 1999. Behavior of ground systems excited by high impulse currents: the model and its validation. IEEE Trans. Power Del., 14(3):1008–1017. [doi:10.1109/61.772347]
7. Geri, A., Veca, G.M., Garbagnati, E., Sartorio, G., 1992. Nonlinear behavior of ground electrodes under lightning surge currents: computer modeling and comparison with experimental results. IEEE Trans. Magn., 28(2):1442–1445. [doi:10.1109/20.123966]
8. Grcev, L., 1986. Calculation of the Transient Impedance of Grounding Systems. PhD Thesis, University of Zagreb, Croatian.Google Scholar
9. Harrington, R.F., 2001. Time-Harmonic Electromagnetic Fields. Wiley-IEEE Press.Google Scholar
10. Heimbach, M., Grcev, L.D., 1997. Grounding system analysis in transients programs applying electromagnetic field approach. IEEE Trans. Power Del., 12(1):186–193. [doi:10.1109/61.568240]
11. Hosono, T., 1981. Numerical inversion of Laplace transform and some applications to wave optics. Radio Sci., 16(6):1015–1019. [doi:10.1029/RS016i006p01015]
12. Ishimaru, A., 1991. Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice-Hall Inc., Englewood Cliffs, NJ.Google Scholar
13. Liu, Y.Q., Zitnik, M., Thottappillil, R., 2001. An improved transmission line model of grounding systems. IEEE Trans. Electromagn. Compat., 43(3):348–355. [doi:10.1109/15.942606]
14. Lorentzou, M.I., Hatziargyriou, M.I., Papadias, N.D., 2003. Time domain analysis of grounding electrodes impulse response. IEEE Trans. Power Del., 18(2):517–524. [doi:10.1109/TPWRD.2003.809686]
15. McAllister, I.W., Crichton, G.C., 1991. Analysis of the temporal electric fields in lossy dielectric media. IEEE Trans. Electr. Insul., 26(3):513–528. [doi:10.1109/14.85125]
16. Meliopoulos, A.P., Moharam, M.G., 1983. Transient analysis of grounding systems. IEEE Trans. Power Appar. Syst., 102(2):389–399. [doi:10.1109/TPAS.1983.317686]
17. Mentre, F.E., Grcev, L., 1994. EMTP-based model for grounding system analysis. IEEE Trans. Power Del., 9(4):1838–1849. [doi:10.1109/61.329517]
18. Otero, A.F., Cidras, J., del Alamo, J.L., 1999. Frequencydependence grounding system calculation by means of a conventional nodal analysis technique. IEEE Trans. Power Del., 14(3):873–878. [doi:10.1109/61.772327]
19. Poljak, D., Doric, V., 2006. Wire antenna model for transient analysis of simple grounding systems, part I: the vertical grounding electrode. Progr. Electromagn. Res., 64:149–166. [doi:10.2528/PIER06062101]
20. Portela, C., 1997. Frequency and Transient Behavior of Grounding Systems, Part I. Physical and Methodological Aspects. IEEE Int. Symp. on Electromagnetic Compatibility, p.379–384.Google Scholar
21. Ramamoorty, M., Babu Narayanan, M.M., Parameswaran, S., Mukhedkar, D., 1989. Transient performance of grounding grids. IEEE Trans. Power Del., 4(4):2053–2059. [doi:10.1109/61.35630]
22. Shahrtash, S.M., Ramezani, N., 2008. A New Approach to Compute Transient Behavior of Grounding Electrodes in Time-Domain. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1–5. [doi:10.1109/ICPST.2008.4745321]Google Scholar
23. Stutzman, W.L., Thiele, G.A., 1997. Antenna Theory and Design. Wiley, New York.Google Scholar
24. Tokarsky, P.L., Dolzhikov, V.V., 1998. Simple Approximate Formulas for Evaluating Sommerfeld Type Integrals. VIIth Int. Conf. on Mathematical Methods in Electromagnetic Theory, p.246–248.Google Scholar
25. Velazquez, R., Mukhedkar, D., 1984. Analytical modeling of grounding electrodes transient behavior. IEEE Trans. Power Appar. Syst., 103(6):1314–1322. [doi:10.1109/TPAS.1984.318465]
26. Verma, R., Mukhedkar, D., 1980. Impulse impedance of buried ground wire. IEEE Trans. Power Appar. Syst., 99(5):2003–2007. [doi:10.1109/TPAS.1980.319827]
27. Zhang, B., He, J., Lee, J., Cui, X., Zhao, Z., Zou, J., Chang, S., 2005. Numerical analysis of transient performance of grounding systems considering soil ionization by coupling moment method with circuit theory. IEEE Trans. Magn., 41(5):1440–1443. [doi:10.1109/TMAG.2005.844547]