Journal of Zhejiang University SCIENCE C

, Volume 11, Issue 12, pp 1009–1015 | Cite as

Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system

  • Xia Zhang
  • Hao Wang
  • Xu-dong Zheng
  • Shi-chang Hu
  • Zhong-he Jin
Article

Abstract

We analyze the effects of possible noise sources on a fence structure micromachined capacitive accelerometer system by modeling and simulation to improve its performance. Simulation results show that a mismatch between the two initial sensing capacitors of the accelerometer or a mismatch between the two capacitance-voltage conversion circuits has a great effect on the output noise floor. When there is a serious mismatch, the noise induced by a sinusoidal carrier is the major noise source. When there is no or only a slight mismatch, the differential capacitance-voltage conversion circuits become the main noise source. The simulation results were validated by experiments and some effective approaches are proposed to improve the system resolution.

Key words

Capacitive accelerometer Micro-electromechanical system (MEMS) Noise Modeling Simulation 

CLC number

TN304.12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeby, S., Ensell, G., Kraft, M., Neil, W., 2004. MEMS Mechanical Sensors. Artech House, Boston, USA, p.39–56.Google Scholar
  2. Clark, W.A., 1997. Micromachined Vibratory Rate Gyroscopes. PhD Thesis, University of California, Berkeley, USA, p.101–104.Google Scholar
  3. Couch, L.W., 1983. Digital and Analog Communication Systems. Prentice Hall, Inc., New Jersey, USA, p.416–594.Google Scholar
  4. Gopel, W., Hesse, J., Zemel, J., 1994. Sensors: a Comprehensive Survey, Vol. 7, Mechanical Sensors. Wiley-VCH, Wienheim.Google Scholar
  5. Izham, Z., Ward, M.C.L., 2004. Dynamic simulation of a resonant MEMS magnetometer in Simulink. Sens. Actuat. A, 115(2–3):392–400. [doi:10.1016/j.sna.2004.04.055]CrossRefGoogle Scholar
  6. Kulah, H., Najafi, K., 2002. A Low Noise Switched-Capacitor Interface Circuit for Sub-micro Gravity Resolution Micromachined Accelerometers. Proc. ESSCIRC, p.635–638.Google Scholar
  7. Leland, R.P., 2005. Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens. J., 5(3):493–500. [doi:10.1109/JSEN. 2005.844538]CrossRefGoogle Scholar
  8. Lewis, C.P., Kraft, M., 1996. Simulation of a Micromachined Digital Accelerometer in Simulink and PSPICE. UKACC Int. Conf. on Control, p.205–209. [doi:10.1049/cp:19960 553]Google Scholar
  9. Mohite, S., Patil, N., Pratap, R., 2006. Design, modeling and simulation of vibratory micromachined gyroscopes. J. Phys., 34:757–763. [doi:10.1088/1742-6596/34/1/125]Google Scholar
  10. Peitgen, H., Saupe, D., 1982. The Science of Fractal Images. Springer-Verlag, New York, USA, p.93–94.Google Scholar
  11. Petkov, V.P., Boser, B.E., 2004. Capacitive Interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Advanced Micro and Nanosystems. Wiley-VCH, Weinheim, p.49–92.Google Scholar
  12. Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise low-offset capacitive sensing amplifier for a 50μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5):722–730. [doi:10.1109/JSSC.2004. 826329]CrossRefGoogle Scholar
  13. Xue, W., Wang, J., Cui, T., 2005. Modeling and design of polymer-based tunneling accelerometers by ANSYS/MATLAB. IEEE/ASME Trans. Mechatr., 10(4):468–472. [doi:10.1109/TMECH.2005.852451]CrossRefGoogle Scholar
  14. Yazdi, N., Ayazi, F., Najafi, K., 1998. Micromachined inertial sensors. Proc. IEEE, 86(8):1640–1659. [doi:10.1109/5. 704269]CrossRefGoogle Scholar
  15. Yun, W., 1992. A Surface Micromachined Accelerometer with Integrated CMOS Detection Circuitry. PhD Thesis, University of California, Berkeley, USA.Google Scholar
  16. Zhang, X., Zheng, X.D., Zheng, Y.M., Luo, S.J., Wang, Y.L., Jin, Z.H., 2008. A new modeling method of MEMS system’s noise. Chin. J. Sens. Actuat., 21(3):498–500 (in Chinese).Google Scholar
  17. Zheng, X.D., Jin, Z.H., Wang, Y.L., Lin, W.J., Zhou, X.Q., 2009. An in-plane low-noise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10):1413–1420. [doi:10.1631/jzus.A0820757]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xia Zhang
    • 1
  • Hao Wang
    • 1
  • Xu-dong Zheng
    • 2
  • Shi-chang Hu
    • 1
  • Zhong-he Jin
    • 1
  1. 1.Department of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina
  2. 2.Beijing Institute of Aerospace Control DevicesBeijingChina

Personalised recommendations