Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 11, Issue 10, pp 808–816 | Cite as

Analysis of vibration reduction level in an 8/6 switched reluctance machine by active vibration cancellation

Article
  • 126 Downloads

Abstract

This paper proposes an analytical model for predicting the maximum vibration reduction level in a four-phase 8/6 switched reluctance machine (SRM) by employing active vibration cancellation (AVC), one of the most effective and convenient methods for reducing the vibration and acoustic noise produced by SRMs. Based on the proposed method, the factors that influence the vibration reduction level are analyzed in detail. The relationships between vibration and noise reduction levels at resonance frequency and rotor speed are presented. Moreover, it is shown that a large damping factor will lead to smaller vibration reduction level with AVC while, in contrast, a large resonance frequency will increase the vibration reduction level. Both finite element analyses and experiments were carried out on a prototype 8/6 SRM to validate the proposed method.

Key words

Active vibration cancellation Analytical model Switched reluctance machine Vibration 

CLC number

TM301.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J.W., Park, S.J., Lee, D.H., 2004. Hybrid excitation of SRM for reduction of vibration and acoustic noise. IEEE Trans. Ind. Electron., 51(2):374–380. [doi:10.1109/TIE. 2004.825227]CrossRefMathSciNetGoogle Scholar
  2. Cai, W., Pillay, P., Tang, Z., 2002. Impact of stator windings and end-bells on resonant frequencies and mode shapes of switched reluctance motors. IEEE Trans. Ind. Appl., 38(4):1027–1036. [doi:10.1109/TIA.2002.800594]CrossRefGoogle Scholar
  3. Cameron, D.E., Lang, J.J., Umans, S.D., 1992. The origin and reduction of acoustic noise in double salient variable reluctance motor. IEEE Trans. Ind. Appl., 28(6):1250–1255. [doi:10.1109/28.175275]CrossRefGoogle Scholar
  4. Chai, J.Y., Lin, Y.W., Liaw, C.M., 2006. Comparative study of switching control in vibration and acoustic noise reductions for switched reluctance motor. IEE Proc.-Electr. Power Appl., 153(3):348–360. [doi:10.1049/ip-epa:20050340]CrossRefGoogle Scholar
  5. Colby, R.S., Mottier, F.M., Miller, T.J.E., 1996. Vibration modes and acoustic noise in a four-phase switched reluctance motor. IEEE Trans. Ind. Appl., 32(6):1357–1364. [doi:10.1109/28.556639]CrossRefGoogle Scholar
  6. Gabsi, M., Camus, F., Loyau, T., Barbry, J.L., 1999. Noise Reduction of Switched Reluctance Motor. Int. Conf. Electric Machines and Drives, p.263–265. [doi:10.1109/IEMDC.1999.769087]Google Scholar
  7. Ha, K.H., Kim, Y.K., Lee, G.H., Hong, J.P., 2004. Vibration reduction of switched reluctance motor by experimental transfer function and response surface methodology. IEEE Trans. Magn., 40(2):577–580. [doi:10.1109/TMAG. 2004.825028]CrossRefGoogle Scholar
  8. Lecointe, J.P., Romary, R., Brudny, J.F., McClelland, M., 2004. Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor. IEE Proc.-Electr. Power Appl., 151(6):725–733. [doi:10.1049/ip-epa:20040682]CrossRefGoogle Scholar
  9. Long, S.A, Zhu, Z.Q., Howe D., 2001. Vibration behaviour of stators of switched reluctance motors. IEE Proc.-Electr. Power Appl., 148(3):257–264. [doi:10.1049/ip-epa:20010255]CrossRefGoogle Scholar
  10. Long, S.A., Zhu, Z.Q., Howe, D., 2005. Effectiveness of active noise and vibration cancellation for switched reluctance machines operating under alternative control strategies. IEEE Trans. Energy Conv., 20(4):792–801. [doi:10.1109/TEC.2005.853763]CrossRefGoogle Scholar
  11. Miller, T.J., 1993. Switched Reluctance Motor and Their Control. Oxford, UK.Google Scholar
  12. Pollock, C., Wu, C.Y., 1997. Acoustic noise cancellation techniques for switched reluctance drives. IEEE Trans. Ind. Appl., 33(2):477–484. [doi:10.1109/28.568013]CrossRefGoogle Scholar
  13. Srinivas, K.N., Arumugam, R., 2004. Static and dynamic vibration analyses of switched reluctance motors including bearing, housing, rotor dynamics, and applied loads. IEEE Trans. Magn., 40(4):1911–1919. [doi:10.1109/TMAG.2004.828034]CrossRefGoogle Scholar
  14. Sun, J.B., Zhan, Q.H., Wang, S.H., Ma, Z.Y., 2007. A novel radiating rib structure in switched reluctance motors for low acoustic noise. IEEE Trans. Magn., 43(9):3630–3637. [doi:10.1109/TMAG.2007.902604]CrossRefGoogle Scholar
  15. Tang, Y., 1997. Characterization numerical analysis, and design of switched reluctance motors. IEEE Trans. Ind. Appl., 33(6):1544–1552. [doi:10.1109/28.649967]CrossRefGoogle Scholar
  16. Wu, C.Y., Pollock, C., 1995. Analysis and reduction of vibration and acoustic noise in the switched reluctance drive. IEEE Trans. Ind. Appl., 31(1):91–98. [doi:10.1109/28.363045]CrossRefGoogle Scholar

Copyright information

© ?Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Electrical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations