Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 11, Issue 8, pp 587–597 | Cite as

A P300 based online brain-computer interface system for virtual hand control

  • Wei-dong Chen
  • Jian-hui Zhang
  • Ji-cai Zhang
  • Yi Li
  • Yu Qi
  • Yu Su
  • Bian Wu
  • Shao-min Zhang
  • Jian-hua Dai
  • Xiao-xiang Zheng
  • Dong-rong Xu
Article

Abstract

Brain-computer interface (BCI) is a communication system that can help lock-in patients to interact with the outside environment by translating brain signals into machine commands. The present work provides a design for a virtual reality (VR) based BCI system that allows human participants to control a virtual hand to make gestures by P300 signals, with a positive peak of potential about 300 ms posterior to the onset of target stimulus. In this virtual environment, the participants can obtain a more immersed experience with the BCI system, such as controlling a virtual hand or walking around in the virtual world. Methods of modeling the virtual hand and analyzing the P300 signals are also described in detail. Template matching and support vector machine were used as the P300 classifier and the experiment results showed that both algorithms perform well in the system. After a short time of practice, most participants could learn to control the virtual hand during the online experiment with greater than 70% accuracy.

Key words

Brain-computer interface (BCI) Electroencephalography (EEG) P300 Virtual reality (VR) Template matching Support vector machine (SVM) 

CLC number

TP399 R318 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayliss, J.D., Inverso, S.A., Tentler, A., 2004. Changing the P300 brain computer interface. Cyberpsych. & Behav., 7(6):694–704. [doi:10.1089/cpb.2004.7.694]CrossRefGoogle Scholar
  2. Beverina, F., Palmas, G., Silvoni, S., Piccione, F., 2003. User adaptive BCIs SSVEP and P300 based interfaces. PsychNol. J., 1(4):331–354.Google Scholar
  3. Boser, B.E., Guyon, I.M., Vapnik, V., 1992. A Training Algorithm for Optimal Margin Classifiers. Proc. 5th Annual Workshop on Computational Learning Theory, p.144–152. [doi:10.1145/130385.130401]Google Scholar
  4. Cortes, C., Vapnik, U., 1995. Support-vector networks. Mach. Learn., 20(3):273–297. [doi:10.1023/A:1022627411411]MATHGoogle Scholar
  5. Croft, R.J., Barry, R.J., 2000. Removal of ocular artifact from the EEG: a review. Neurophys. Clin., 30(1):5–19. [doi:10.1016/S0987-7053(00)00055-1]CrossRefGoogle Scholar
  6. Farwell, L.A., Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephal. Clin. Neurophys., 70(6):510–523. [doi:10.1016/0013-4694(88)90149-6]CrossRefGoogle Scholar
  7. Feng, Z.Y., Chen, W.D., Ye, X.S., Zhang, S.M., Zheng, X.J., Wang, P., Jiang, J., Jin, L., Xu, Z.J., Liu, C.Q., et al., 2007. A remote control training system for rat navigation in complicated environment. J. Zhejiang Univ. Sci. A, 8(2):323–330. [doi:10.1631/jzus.2007.A0323]CrossRefGoogle Scholar
  8. Finke, A., Lenhardt, A., Ritter, H., 2009. The MindGame: a P300-based brain computer interface game. Neur. Networks, 22(9):1329–1333. [doi:10.1016/j.neunet.2009.07.003]CrossRefGoogle Scholar
  9. Friedman, D., Leeb, R., Guger, C., Steed, A., Pfurtscheller, G., 2007. Navigating virtual reality by thought: what is it like? Pres. Teleoper. Virt. Environ., 16(1):100–110. [doi:10.1162/pres.16.1.100]CrossRefGoogle Scholar
  10. Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K., 2008. An efficient P300-based brain-computer interface for disabled subjects. J. Neuros. Methods, 167(1):115–125. [doi:10.1016/j.jneumeth.2007.03.005]CrossRefGoogle Scholar
  11. Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R., 2008. Toward enhanced P300 speller performance. J. Neurosci. Methods, 167(1):15–21. [doi:10.1016/j.jneumeth.2007.07.017]CrossRefGoogle Scholar
  12. Lebedev, M.A., Nicolelis, M.A., 2006. Brain-machine interfaces: past, present and future. Trends Neurosci., 29(9):536–546. [doi:10.1016/j.tins.2006.07.004]CrossRefGoogle Scholar
  13. Lee, J., Kunii, T.L., 1995. Model-based analysis of hand posture. IEEE Comput. Graph. Appl., 15(5):77–86. [doi:10.1109/38.403831]CrossRefGoogle Scholar
  14. Li, Y., Zhang, J.H., Su, Y., Chen, W.D., Qi, Y., Zhang, J.C., Zheng, X.X., 2009. P300 Based BCI Messenger. IEEE/ICME Int. Conf. on Complex Medical Engineering, p.1–5. [doi:10.1109/ICCME.2009.4906636]Google Scholar
  15. Lin, J., Wu, Y., Huang, T.S., 2000. Modeling the Constraints of Human Hand Motion. Proc. Workshop on Human Motion, p.121–126. [doi:10.1109/HUMO.2000.897381]Google Scholar
  16. Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D.J., Vaughan, T.M., et al., 2008. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophys., 119(8):1909–1916. [doi:10.1016/j.clinph.2008.03.034]CrossRefGoogle Scholar
  17. Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., Palmas, G., Beverina, F., 2006. A P300-based brain computer interface reliability and performance in healthy and paralysed participants. Clin. Neurophys., 117(3):531–547. [doi:10.1016/j.clinph.2005.07.024]CrossRefGoogle Scholar
  18. Piccione, F., Priftis, K., Tonin, P., 2008. Task and stimulation paradigm effects in a P300 brain computer interface exploitable in a virtual environment: a pilot study. PsychNol. J., 6(1):99–108.Google Scholar
  19. Sellers, E.W., Donchin, E., 2006. A P300-based brain-computer interface: initial tests by ALS patients. J. Neurosci. Methods, 117:538–548. [doi:10.1016/j.clinph.2005.06.027]Google Scholar
  20. Sellers, E.W., Krusienski, D.J., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R., 2006. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol. Psychol., 73(3):242–252. [doi:10.1016/j.biopsycho.2006.04.007]CrossRefGoogle Scholar
  21. Serby, H., Yom-Tov, E., Inbar, G.F., 2005. An improved P300-based brain-computer interface. IEEE Trans. Neur. Syst. Rehabil. Eng., 13(1):89–98. [doi:10.1109/TNSRE.2004.841878]CrossRefGoogle Scholar
  22. Sturman, D.J., 1992. Whole-Hand Input. PhD Thesis, Massachusetts Institute of Technology, USA.Google Scholar
  23. Su, Y., Wu, B., Chen, W.D., 2008. P300-based brain computer interface: prototype of a Chinese speller. J. Comput. Inform. Syst., 4(4):1515–1522.Google Scholar
  24. Theodoridis, S., Koutroumbas, K., 2006. Pattern Recognition. Elsevier/Academic Press, Boston.MATHGoogle Scholar
  25. Vaughan, T.M., Wolpaw, J.R., 2006. The third international meeting on brain-computer interface technology: making a difference. IEEE Trans. Neur. Syst. Rehabil. Eng., 14(2):126–127. [doi:10.1109/TNSRE.2006.875649]CrossRefGoogle Scholar
  26. Vaughan, T.M., Heetderks, W.J., Trejo, L.J., Rymer, W.Z., Weinrich, M., Moore, M.M., Kübler, A., Dobkin, B.H., Birbaumer, N., Donchin, E., et al., 2003. Brain-computer interface technology: a review of the second international meeting. IEEE Trans. Neur. Syst. Rehabil. Eng., 11(2):94–109. [doi:10.1109/TNSRE.2003.814799]CrossRefGoogle Scholar
  27. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M., 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng., 8(2):164–173. [doi:10.1109/TRE.2000.847807]CrossRefGoogle Scholar
  28. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M., 2002. Brain-computer interfaces for communication and control. Clin. Neurophys., 113(6): 767–791. [doi:10.1016/S1388-2457(02)00057-3]CrossRefGoogle Scholar
  29. Yi, B., Harris, F.C.Jr., Wang, L., Yan, Y., 2005. Real-time natural hand gestures. Comput. Sci. Eng., 7(3):92–96. [doi:10.1109/MCSE.2005.58]CrossRefGoogle Scholar
  30. Zhang, H.H., Guan, C.T., Wang, C.C., 2008. Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models. IEEE Trans. Biomed. Eng., 55(6):1754–1763. [doi:10.1109/TBME.2008.919128]CrossRefGoogle Scholar
  31. Zhao, Q.B., Zhang, L.Q., Cichocki, A., 2009. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin. Sci. Bull., 54(1):78–87. [doi:10.1007/s11434-008-0547-3]CrossRefGoogle Scholar

Copyright information

© ?Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wei-dong Chen
    • 1
    • 2
  • Jian-hui Zhang
    • 1
    • 2
  • Ji-cai Zhang
    • 1
    • 2
  • Yi Li
    • 1
    • 2
  • Yu Qi
    • 1
    • 2
  • Yu Su
    • 1
    • 2
  • Bian Wu
    • 1
    • 3
  • Shao-min Zhang
    • 1
    • 3
  • Jian-hua Dai
    • 1
    • 2
  • Xiao-xiang Zheng
    • 1
    • 3
  • Dong-rong Xu
    • 1
    • 4
    • 5
  1. 1.Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina
  2. 2.School of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  3. 3.Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  4. 4.MRI Unit, Department of PsychiatryColumbia University College of Physicians and SurgeonsNew YorkUSA
  5. 5.New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations