Journal of Zhejiang University SCIENCE C

, Volume 11, Issue 5, pp 394–400 | Cite as

Model predictive control with an on-line identification model of a supply chain unit

  • Jian Niu
  • Zu-hua Xu
  • Jun Zhao
  • Zhi-jiang Shao
  • Ji-xin Qian
Article

Abstract

A model predictive controller was designed in this study for a single supply chain unit. A demand model was described using an autoregressive integrated moving average (ARIMA) model, one that is identified on-line to forecast the future demand. Feedback was used to modify the demand prediction, and profit was chosen as the control objective. To imitate reality, the purchase price was assumed to be a piecewise linear form, whereby the control objective became a nonlinear problem. In addition, a genetic algorithm was introduced to solve the problem. Constraints were put on the predictive inventory to control the inventory fluctuation, that is, the bullwhip effect was controllable. The model predictive control (MPC) method was compared with the order-up-to-level (OUL) method in simulations. The results revealed that using the MPC method can result in more profit and make the bullwhip effect controllable.

Key words

Supply chain Model predictive control On-line identification Optimization with constraint Piecewise linear price 

CLC number

TP29 C939 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beamon, B.M., 1998. Supply chain design and analysis: models and methods. Int. J. Prod. Econ., 55(3):281–294. [doi:10.1016/S0925-5273(98)00079-6]CrossRefGoogle Scholar
  2. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 1978. Time Series Analysis: Forecasting and Control. John Wiley, San Francisco, USA.Google Scholar
  3. Camacho, E.F., Bordons, C., 1995. Model Predictive Control in the Process Industry. Springer-Verlag, London, UK.Google Scholar
  4. Chu, F., 2008. Analyzing and forecasting tourism demand with ARAR algorithm. Tourism Manag., 29(6):1185–1196. [doi:10.1016/j.tourman.2008.02.020]CrossRefGoogle Scholar
  5. Erdogdu, E., 2007. Electricity demand analysis using cointegration and ARIMA modeling: a case study of Turkey. Energy Policy, 35(2):1129–1146. [doi:10.1016/j.enpol.2006.02.013]CrossRefGoogle Scholar
  6. Han, K., Zhao, J., Zhu, Y., Xu, Z., Qian, J., 2008. MPC with on-line disturbance model estimation and its application to PTA solvent dehydration tower. J. Chem. Ind. Eng., 59(7):1657–1664 (in Chinese).Google Scholar
  7. Lin, P., Wong, D.S., Jang, S., Shieh, S., Chu, J.Z., 2004. Controller design and reduction of bullwhip for a model supply chain system using z-transform analysis. J. Process Control, 14(5):487–499. [doi:10.1016/j.jprocont.2003.09.005]CrossRefGoogle Scholar
  8. Lin, P., Jang, S., Wong, D.S., 2005. Predictive control of a decentralized supply chain unit. Ind. Eng. Chem. Res., 44(24):9120–9128. [doi:10.1021/ie0489610]CrossRefGoogle Scholar
  9. Maciejowski, J.M., 2002. Predictive Control with Constraints. Person Education Limited, Edinburgh Gate, UK.Google Scholar
  10. Min, H., Zhou, G., 2002. Supply chain modeling: past, present and future. Comput. Ind. Eng., 43(1–2):231–249. [doi:10.1016/S0360-8352(02)00066-9]CrossRefGoogle Scholar
  11. Morari, M., Lee, J.H., 1999. Model predictive control: past, present and future. Comput. Chem. Eng., 23(4–5):667–682. [doi:10.1016/S0098-1354(98)00301-9]CrossRefGoogle Scholar
  12. Niu, Y., Qian, X., Ren, J., 2007. Application of ARIMA model in semiconductor demand forecasting. Semicond. Technol., 32(5):391–393 (in Chinese).Google Scholar
  13. Ohshima, M., Ohno, H., Hashimoto, L., Sasajima, M., Maejima, M., Tsuto, K., Ogawa, T., 1995. Model predictive control with adaptive disturbance prediction and its application to fatty acid distillation column control. J. Process Control, 5(1):41–48. [doi:10.1016/0959-1524(95)95944-9]CrossRefGoogle Scholar
  14. Pannocchia, C., Rawlings, J.B., 2003. Disturbance models for offset-free model-predictive control. AIChE J., 49(2): 426–437. [doi:10.1002/aic.690490213]CrossRefGoogle Scholar
  15. Perea-López, E., Ydstie, B.E., Grossmann, I.E., 2003. A model predictive control strategy for supply chain optimization. Comput. Chem. Eng., 27(8–9):1201–1218. [doi:10.1016/S0098-1354(03)00047-4]CrossRefGoogle Scholar
  16. Qian, J., Zhao, J., Xu, Z., 2007. Predictive Control. Chemical Industry Press, Beijing, China (in Chinese).Google Scholar
  17. Sarimveis, H., Patrinos, P., Tarantilis, C.D., Kiranoudis, C.T., 2008. Dynamic modeling and control of supply chain systems: a review. Comput. Oper. Res., 35(11):3530–3561. [doi:10.1016/j.cor.2007.01.017]MATHCrossRefGoogle Scholar
  18. Seferlis, P., Giannelos, N.F., 2004. A two-layered optimization-based control strategy for multi-echelon supply chain networks. Comput. Chem. Eng., 28(5):799–809. [doi:10.1016/j.compchemeng.2004.02.022]CrossRefGoogle Scholar
  19. Wang, W., Rivera, D.E., 2008. Model predictive control for tactical decision-making in semiconductor manufacturing supply chain management. IEEE Trans. Control Syst. Technol., 16(5):841–855. [doi:10.1109/TCST.2007.916327]CrossRefGoogle Scholar
  20. Wang, W., Rivera, D.E., Kempf, K.G., 2007. Model predictive control strategies for supply chain management in semiconductor manufacturing. Int. J. Prod. Econ., 107(1): 56–77. [doi:10.1016/j.ijpe.2006.05.013]CrossRefGoogle Scholar

Copyright information

© “Journal of Zhejiang University Science” Editorial Office and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jian Niu
    • 1
  • Zu-hua Xu
    • 1
  • Jun Zhao
    • 1
  • Zhi-jiang Shao
    • 1
  • Ji-xin Qian
    • 1
  1. 1.State Key Lab of Industrial Control TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations