Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway

红茶提取物茶黄素酸和尼莫地平通过线粒体途径凋亡介导的协同神经保护作用模型的研究

Abstract

Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.

概要

目的

利用数学建模方法来研究茶黄素酸和尼莫地平在线粒体凋亡途径中的协同神经保护作用.

创新点

茶黄素酸诱导的 Bcl-2 表达在理论上可以引起系统性的双稳态. 此双稳态对模型参数变化具有很强的鲁棒性, 但同时又对生存状态阈值的变化具有相当的敏感性. 通过随机模拟, 我们可以很好地拟合实验中测定的茶黄素酸剂量反应. 此外, 我们确定了茶黄素酸和尼莫地平 (一种临床应用的神经保护药物) 之间的剂量和时间依赖性协同作用, 这种协同效应通过双稳态得到增强.

方法

采用微分方程描述分子间相互作用; 运用局部敏感性分析探讨系统参数敏感性; 运用 Bliss 和 Loewe 联合指数计算茶黄素酸和尼莫地平的协同性; 使用 MATCONT 工具箱揭示系统的分岔性质.

结论

与持续的茶黄素酸处理相比, 对细胞给予脉冲样茶黄素酸处理可以显著提高细胞生存率. 这些数据表明, 茶黄素酸可以诱导系统产生双稳态, 同时茶黄素酸与尼莫地平的协同作用可能为缺血性中风的治疗提供了一种有效的方式.

This is a preview of subscription content, access via your institution.

References

  1. Albeck JG, Burke JM, Spencer SL, et al., 2008. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol, 6(12):2831–2852. https://doi.org/10.1371/journal.pbio.0060299

    CAS  PubMed  Article  Google Scholar 

  2. Bagci EZ, Vodovotz Y, Billiar TR, et al., 2006. Bistability in apoptosis: roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J, 90(5):1546–1559. https://doi.org/10.1529/biophysj.105.068122

    CAS  PubMed  Article  Google Scholar 

  3. Chen C, Cui J, Lu HZ, et al., 2007. Modeling of the role of a Bax-activation switch in the mitochondrial apoptosis decision. Biophys J, 92(12):4304–4315. https://doi.org/10.1529/biophysj.106.099606

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Chong SJF, Low ICC, Pervaiz S, 2014. Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion, 19:39–48. https://doi.org/10.1016/j.mito.2014.06.002

    CAS  PubMed  Article  Google Scholar 

  5. Chong SJF, Marchi S, Petroni G, et al., 2020. Noncanonical cell fate regulation by Bcl-2 proteins. Trends Cell Biol, 30(7):537–555. https://doi.org/10.1016/j.tcb.2020.03.004

    CAS  PubMed  Article  Google Scholar 

  6. Coling DE, Yu KCY, Somand D, et al., 2003. Effect of SOD1 overexpression on age- and noise-related hearing loss. Free Radic Biol Med, 34(7):873–880. https://doi.org/10.1016/s0891-5849(02)01439-9

    CAS  PubMed  Article  Google Scholar 

  7. Cui J, Chen C, Lu HZ, et al., 2008. Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS ONE, 3(1):e1469. https://doi.org/10.1371/journal.pone.0001469

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Dejean LM, Martinez-Caballero S, Guo L, et al., 2005. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell, 16(5):2424–2432. https://doi.org/10.1091/mbc.E04-12-1111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Dhooge A, Govaerts W, Kuznetsov YA, 2003. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw, 29(2):141–164. https://doi.org/10.1145/779359.779362

    Article  Google Scholar 

  10. Fitzgerald JB, Schoeberl B, Nielsen UB, et al., 2006. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol, 2(9):458–466. https://doi.org/10.1038/nchembio817

    CAS  PubMed  Article  Google Scholar 

  11. Görlach A, Bertram K, Hudecova S, et al., 2015. Calcium and ROS: a mutual interplay. Redox Biol, 6:260–271. https://doi.org/10.1016/j.redox.2015.08.010

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Ho KL, Harrington HA, 2010. Bistability in apoptosis by receptor clustering. PLoS Comput Biol, 6(10):e1000956. https://doi.org/10.1371/journal.pcbi.1000956

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Jiang H, Zhang LJ, Kuo J, et al., 2005. Resveratrol-induced apoptotic death in human U251 glioma cells. Mol Cancer Ther, 4(4):554–561. https://doi.org/10.1158/1535-7163.MCT-04-0056

    CAS  PubMed  Article  Google Scholar 

  14. Keizer EM, Bastian B, Smith RW, et al., 2019. Extending the linear-noise approximation to biochemical systems influenced by intrinsic noise and slow lognormally distributed extrinsic noise. Phys Rev E, 99(5):052417. https://doi.org/10.1103/PhysRevE.99.052417

    CAS  PubMed  Article  Google Scholar 

  15. Koubi D, Jiang H, Zhang LJ, et al., 2005. Role of Bcl-2 family of proteins in mediating apoptotic death of PC12 cells exposed to oxygen and glucose deprivation. Neurochem Int, 46(1):73–81. https://doi.org/10.1016/j.neuint.2004.06.006

    CAS  PubMed  Article  Google Scholar 

  16. Legewie S, Blüthgen N, Herzel H, 2006. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol, 2(9):e120. https://doi.org/10.1371/journal.pcbi.0020120

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Legrand AJ, Konstantinou M, Goode EF, et al., 2019. The diversification of cell death and immunity: Memento mori. Mol Cell, 76(2):232–242. https://doi.org/10.1016/j.molcel.2019.09.006

    CAS  PubMed  Article  Google Scholar 

  18. Letai A, Bassik MC, Walensky LD, et al., 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2(3):183–192. https://doi.org/10.1016/S1535-6108(02)00127-7

    CAS  PubMed  Article  Google Scholar 

  19. Li LX, Yiin GS, Geraghty OC, et al., 2015. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol, 14(9):903–913. https://doi.org/10.1016/S1474-4422(15)00132-5

    PubMed  PubMed Central  Article  Google Scholar 

  20. Li QJ, Ji ZL, Li K, 2018. Effect of combination of parenteral edaravone and nimodipine on ischemic cerebral injury following cerebral hemorrhage. Trop J Pharm Res, 17(5):955–960. https://doi.org/10.4314/tjpr.v17i5.27

    CAS  Article  Google Scholar 

  21. Li Y, Shi J, Sun XT, et al., 2020. Theaflavic acid from black tea protects PC12 cells against ROS-mediated mitochondrial apoptosis induced by OGD/R via activating Nrf2/ARE signaling pathway. J Nat Med, 74:238–246. https://doi.org/10.1007/s11418-019-01333-4

    PubMed  PubMed Central  Article  Google Scholar 

  22. Liu CQ, Zhou RX, Sun SG, 2004. Nimodipine modulates Bcl-2 and Bax mRNA expression after cerebral ischemia. J Huazhong Univ Sci Technol Med Sci, 24(2):170–172. https://doi.org/10.1007/BF02885421

    CAS  Article  Google Scholar 

  23. Liu L, Huang WW, Wang JH, et al., 2017. Anthraquinone derivative exerted hormetic effect on the apoptosis in oxygen-glucose deprivation-induced PC12 cells via ERK and Akt activated Nrf2/HO-1 signaling pathway. Chem Biol Interact, 262:1–11. https://doi.org/10.1016/j.cbi.2016.12.001

    CAS  PubMed  Article  Google Scholar 

  24. Luo YG, Yang XF, Zhao ST, et al., 2013. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons. Neurochem Int, 63(8):826–831. https://doi.org/10.1016/j.neuint.2013.06.004

    CAS  PubMed  Article  Google Scholar 

  25. Mehta SL, Manhas N, Raghubir R, 2007. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev, 54(1):34–66. https://doi.org/10.1016/j.brainresrev.2006.11.003

    CAS  PubMed  Article  Google Scholar 

  26. Niture SK, Jaiswal AK, 2012. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem, 287(13):9873–9886. https://doi.org/10.1074/jbc.M111.312694

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Pellegrini-Giampietro DE, Mannaioni G, Bagetta G, 2009. Post-ischemic brain damage: the endocannabinoid system in the mechanisms of neuronal death. FEBS J, 276(1):2–12. https://doi.org/10.1111/j.1742-4658.2008.06765.x

    CAS  PubMed  Article  Google Scholar 

  28. Roine RO, Kaste M, Kinnunen A, et al., 1990. Nimodipine after resuscitation from out-of-hospital ventricular fibrillation: a placebo-controlled, double-blind, randomized trial. JAMA, 264(24):3171–3177. https://doi.org/10.1001/jama.1990.03450240073043

    CAS  PubMed  Article  Google Scholar 

  29. Roux J, Hafner M, Bandara S, et al., 2015. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol, 11(5):803. https://doi.org/10.15252/msb.20145584

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Saito A, Maier CM, Narasimhan P, et al., 2005. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol, 31(1–3): 105–116. https://doi.org/10.1385/MN:31:1-3:105

    CAS  PubMed  Article  Google Scholar 

  31. Seidman MD, 2000. Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope, 110(5):727–738. https://doi.org/10.1097/00005537-200005000-00003

    CAS  PubMed  Article  Google Scholar 

  32. Seidman MD, Khan MJ, Bai U, et al., 2000. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol, 21(2):161–167. https://doi.org/10.1016/s0196-0709(00)80003-4

    CAS  PubMed  Article  Google Scholar 

  33. Seidman MD, Khan MJ, Tang WX, et al., 2002. Influence of lecithin on mitochondrial DNA and age-related hearing loss. Otolaryngol Head Neck Surg, 127(3):138–144. https://doi.org/10.1067/mhn.2002.127627

    PubMed  Article  Google Scholar 

  34. Seidman MD, Ahmad N, Joshi D, et al., 2004. Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Otolaryngol Suppl, (552):16–24. https://doi.org/10.1080/03655230410017823

  35. Spencer SL, Sorger PK, 2011. Measuring and modeling apoptosis in single cells. Cell, 144(6):926–939. https://doi.org/10.1016/j.cell.2011.03.002

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Straetemans R, O’Brien T, Wouters L, et al., 2005. Design and analysis of drug combination experiments. Biom J, 47(3):299–308. https://doi.org/10.1002/bimj.200410124

    PubMed  Article  Google Scholar 

  37. Sun TZ, Chen C, Wu YY, et al., 2009. Modeling the role of p53 pulses in DNA damage-induced cell death decision. BMC Bioinformatics, 10:190. https://doi.org/10.1186/1471-2105-10-190

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Sun TZ, Lin XZ, Wei YN, et al., 2010. Evaluating bistability of Bax activation switch. FEBS Lett, 584(5):954–960. https://doi.org/10.1016/j.febslet.2010.01.034

    CAS  PubMed  Article  Google Scholar 

  39. Thompson JW, Narayanan SV, Perez-Pinzon MA, 2012. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol, 10(4):354–369. https://doi.org/10.2174/157015912804143577

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Tian TH, Burrage K, 2006. Stochastic models for regulatory networks of the genetic toggle switch. Proc Natl Acad Sci USA, 103(22):8372–8377. https://doi.org/10.1073/pnas.0507818103

    CAS  PubMed  Article  Google Scholar 

  41. Tsujimoto Y, 2003. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol, 195(2):158–167. https://doi.org/10.1002/jcp.10254

    CAS  PubMed  Article  Google Scholar 

  42. Tyson JJ, Chen KC, Novak B, 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol, 15(2):221–231. https://doi.org/10.1016/S0955-0674(03)00017-6

    CAS  PubMed  Article  Google Scholar 

  43. Willis SN, Adams JM, 2005. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol, 17(6):617–625. https://doi.org/10.1016/j.ceb.2005.10.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Yang CJ, Hawkins KE, Doré S, et al., 2019. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol, 316(2):C135–C153. https://doi.org/10.1152/ajpcell.00136.2018

    CAS  PubMed  Article  Google Scholar 

  45. Yin ZY, Qi H, Liu LL, et al., 2017. The optimal regulation mode of Bcl-2 apoptotic switch revealed by bistability analysis. Biosystems, 162:44–52. https://doi.org/10.1016/j.biosystems.2017.09.011

    CAS  PubMed  Article  Google Scholar 

  46. Youle RJ, Strasser A, 2008. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 9(1):47–59. https://doi.org/10.1038/nrm2308

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 31971185 and 31800316), the Key Projects of Support Program for Outstanding Young Talents in Colleges and Universities of Anhui Province (Nos. gxyqZD2020031 and gxyq2018034), and the Key Project of the Education Department of Anhui Province, China (No. KJ2017A359).

We thank Dr. Liangliang ZHU (School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anhui, China) for critical reading of the manuscript.

Author information

Affiliations

Authors

Contributions

Dan MU and Tingzhe SUN conceptualized the study, performed project administration, and acquired the funding; Dan MU, Huaguang QIN, and Tingzhe SUN developed the methodology and wrote the manuscript; Dan MU, Huaguang QIN, Mengjie JIAO, Shaogui HUA, and Tingzhe SUN validated the study, performed the data analysis and curation, and reviewed the draft; Tingzhe SUN supervised the study. All authors have read and agreed to the published version of the manuscript, and therefore, have full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Tingzhe Sun.

Ethics declarations

Dan MU, Huaguang QIN, Mengjie JIAO, Shaogui HUA, and Tingzhe SUN declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Qin, H., Jiao, M. et al. Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway. J. Zhejiang Univ. Sci. B 22, 123–135 (2021). https://doi.org/10.1631/jzus.B2000540

Download citation

Key words

  • Theaflavic acid (TFA)
  • Nimodipine
  • Ischemic stroke
  • Apoptosis
  • Synergy

关键词

  • 茶黄素酸
  • 尼莫地平
  • 缺血性中风
  • 凋亡
  • 协同性