Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells

从花椒叶中提取的羟基胡椒酚可以诱导耐 TP53 的 HT-29 结肠癌细胞的细胞周期阻滞和凋亡

Abstract

This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 µg/mL) and PBL water extract (380 µg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 µmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.

概要

目的

阐明羟基胡椒酚 (HC) 的抗恶性细胞增生的机制. 并研究 HC 对 HT-29 结肠癌细胞的细胞周期、 凋亡及 c-Jun 氨基末端激酶 (JNK) 和 P38 丝裂原活化蛋白激酶 (MAPK)表达的影响.

方法

从蒌叶 (PBL) 中分离出 HC, 经高效液相色谱 (HPLC)、 核磁共振 (NMR) 和气相色谱-质谱 (GC-MS) 进行检测. 在处理 24、 48 和 72 h 后, 检测标准药物 5-氟尿嘧啶 (5-FU)、 PBL 水提物和 HC 对 HT-29 细胞的细胞毒性作用. 检测 30 h 内 5-FU 和 HC 处理对细胞周期和凋亡的调控作用. 同时检测 18 h 内磷酸化 JNK (pJNK) 和磷酸化 P38 (pP38) MAPK 的表达变化.

结果

HC (30 μg/ mL) 和 PBL 水提物 (380 μg/ mL) 的半数最大抑制浓度 (IC50) 值在 24 h 时达到, 而 5-FU (50 μmol/ L) 的 IC50 值在 72 h 时达到. 从 12 h 开始 HC 处理的细胞停滞在细胞周期的 G0/G1期. 与 5-FU 处理的细胞相比, HC 处理的细胞凋亡率更高 (P<0.05). 在 HC 处理的细胞中, pJNK 和 pP38 MAPK在 12 h 时出现高表达, 而在 5-FU 处理的 HT-29 细胞中则没有 (P<0.05).

结论

由此可见, HC 可诱导 HT-29 细胞的细胞周期阻滞和凋亡, 这些作用可能由 JNK和 P38 MAPK 介导.

This is a preview of subscription content, access via your institution.

References

  1. Abrahim NN, Kanthimathi MS, Abdul-Aziz A, 2012. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complement Altern Med, 12:220. https://doi.org/10.1186/1472-6882-12-220

    PubMed  PubMed Central  Article  Google Scholar 

  2. Amin A, Gali-Muhtasib H, Ocker M, et al., 2009. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci, 5(1):1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Angulo P, Kaushik G, Subramaniam D, et al., 2017. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol, 10:10. https://doi.org/10.1186/s13045-016-0373-z

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Batra P, Sharma AK, 2013. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3(6):439–459. https://doi.org/10.1007/s13205-013-0117-5

    PubMed  PubMed Central  Article  Google Scholar 

  5. Bhanot A, Sharma R, Noolvi MN, 2011. Natural sources as potential anti-cancer agents: a review. Int J Phytomed, 3(1): 9–26.

    Google Scholar 

  6. Bossi G, Lapi E, Strano S, et al., 2006. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene, 25(2):304–309. https://doi.org/10.1038/sj.onc.1209026

    CAS  PubMed  Article  Google Scholar 

  7. Boyer J, McLean EG, Aroori S, et al., 2004. Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res, 10(6):2158–2167. https://doi.org/10.1158/1078-0432.CCR-03-0362

    CAS  PubMed  Article  Google Scholar 

  8. Brown CJ, Cheok CF, Verma CS, et al., 2011. Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci, 32(1):53–62. https://doi.org/10.1016/j.tips.2010.11.004

    CAS  PubMed  Article  Google Scholar 

  9. Chakraborty JB, Mahato SK, Joshi K, et al., 2012. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Sci, 103(1):88–99. https://doi.org/10.1111/j.1349-7006.2011.02107.x

    CAS  PubMed  Article  Google Scholar 

  10. Chang MC, Uang BJ, Wu HL, et al., 2002. Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species. Br J Pharmacol, 135(3):619–630. https://doi.org/10.1038/sj.bjp.0704492

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Chang MC, Uang BJ, Tsai CY, et al., 2007. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization. Br J Pharmacol, 152(1):73–82. https://doi.org/10.1038/sj.bjp.0707367

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Chen CL, Chi CW, Liu TY, 2000. Enhanced hydroxychavicol-induced cytotoxic effects in glutathione-depleted HepG2 cells. Cancer Lett, 155(1):29–35. https://doi.org/10.1016/S0304-3835(00)00404-3

    CAS  PubMed  Article  Google Scholar 

  13. Chowdhury AA, Chaudhuri J, Biswas N, et al., 2013. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of aif and GSH-ROS-JNK-ERK-iNOS pathway. PLoS ONE, 8(9):e73672. https://doi.org/10.1371/journal.pone.0073672

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Dhanasekaran DN, Reddy EP, 2008. JNK signaling in apoptosis. Oncogene, 27(48):6245–6251. https://doi.org/10.1038/onc.2008.301

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Dhillon AS, Hagan S, Rath O, et al., 2007. MAP kinase signalling pathways in cancer. Oncogene, 26(22):3279–3290. https://doi.org/10.1038/sj.onc.1210421

    CAS  PubMed  Article  Google Scholar 

  16. Garodia P, Ichikawa H, Malani N, et al., 2007. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol, 5(1):25–37. https://doi.org/10.2310/7200.2006.029

    PubMed  Article  Google Scholar 

  17. Garufi A, Pistritto G, Cirone M, et al., 2016. Reactivation of mutant p53 by capsaicin, the major constituent of peppers. J Exp Clin Cancer Rese, 35:136. https://doi.org/10.1186/s13046-016-0417-9

    Article  CAS  Google Scholar 

  18. Gokare P, Finnberg NK, Abbosh PH, et al., 2017. P53 represses pyrimidine catabolic gene dihydropyrimidine dehydrogenase (DPYD) expression in response to thymidylate synthase (TS) targeting. Sci Rep, 7:9711. https://doi.org/10.1038/s41598-017-09859-x

    PubMed  PubMed Central  Article  Google Scholar 

  19. Gundala SR, Aneja R, 2014. Piper betle leaf: a reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties. Cancer Prev Res, 7(5):477–486. https://doi.org/10.1158/1940-6207.CAPR-13-0355

    CAS  Article  Google Scholar 

  20. Gundala SR, Yang CH, Mukkavilli R, et al., 2014. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharmacol, 280(1):86–96. https://doi.org/10.1016/j.taap.2014.07.012

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Hanahan D, Weinberg RA, 2011. Hallmarks of cancer: the next generation. Cell, 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    CAS  PubMed  Article  Google Scholar 

  22. Jeng JH, Ho YS, Chan CP, et al., 2000. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis, 21(7):1365–1370. https://doi.org/10.1093/carcin/21.7.1365

    CAS  PubMed  Article  Google Scholar 

  23. Jeng JH, Chang MC, Hahn LJ, 2001. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol, 37(6):477–492. https://doi.org/10.1016/s1368-8375(01)00003-3

    CAS  PubMed  Article  Google Scholar 

  24. Jeng JH, Chen SY, Liao CH, et al., 2002. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase. Free Radic Biol Med, 32(9):860–871. https://doi.org/10.1016/S0891-5849(02)00749-9

    CAS  PubMed  Article  Google Scholar 

  25. Jeng JH, Wang YJ, Chang WH, et al., 2004. Reactive oxygen species are crucial for hydroxychavicol toxicity toward KB epithelial cells. Cell Mol Life Sci, 61(1):83–96. https://doi.org/10.1007/s00018-003-3272-8

    CAS  PubMed  Article  Google Scholar 

  26. Kitagishi Y, Kobayashi M, Matsuda S, 2012. Protection against cancer with medicinal herbs via activation of tumor suppressor. J Oncol, 2012:236530. https://doi.org/10.1155/2012/236530

    PubMed  PubMed Central  Article  Google Scholar 

  27. Kumar N, Misra P, Dube A, et al., 2010. Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery. Curr Sci, 99(7): 922–932.

    CAS  Google Scholar 

  28. Longley DB, Harkin DP, Johnston PG, 2003. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 3(5):330–338. https://doi.org/10.1038/nrc1074

    CAS  PubMed  Article  Google Scholar 

  29. Majumdar AG, Subramanian M, 2019. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Pharmacol, 166:274–291. https://doi.org/10.1016/j.bcp.2019.05.025

    Article  CAS  Google Scholar 

  30. Martins CP, Brown-Swigart L, Evan GI, 2006. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell, 127(7):1323–1334. https://doi.org/10.1016/j.cell.2006.12.007

    CAS  PubMed  Article  Google Scholar 

  31. Ng PL, Rajab NF, Then SM, et al., 2014. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(8):692–700. https://doi.org/10.1631/jzus.B1300303

    CAS  Article  Google Scholar 

  32. Ozaki T, Nakagawara A, 2011. Role of p53 in cell death and human cancers. Cancers, 3(1):994–1013. https://doi.org/10.3390/cancers3010994

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Paranjpe R, Gundala SR, Lakshminarayana N, et al., 2013. Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management. Carcinogenesis, 34(7):1558–1566. https://doi.org/10.1093/carcin/bgt066

    CAS  PubMed  Article  Google Scholar 

  34. Rahman AA, Jamal ARA, Harun R, et al., 2014. Gammatocotrienol and hydroxy-chavicol synergistically inhibits growth and induces apoptosis of human glioma cells. BMC Complement Altern Med, 14:213. https://doi.org/10.1186/1472-6882-14-213

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Sarkar FH, Li YW, Wang ZW, et al., 2009. Cellular signaling perturbation by natural products. Cell Signal, 21(11):1541–1547. https://doi.org/10.1016/j.cellsig.2009.03.009

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Slattery ML, Lundgreen A, Wolff RK, 2012. MAP kinase genes and colon and rectal cancer. Carcinogenesis, 33(12):2398–2408. https://doi.org/10.1093/carcin/bgs305

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Sui XB, Kong N, Wang X, et al., 2014. JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4:4694. https://doi.org/10.1038/srep04694

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Sung B, Prasad S, Yadav VR, et al., 2012. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer, 64(2):173–197. https://doi.org/10.1080/01635581.2012.630551

    CAS  PubMed  Article  Google Scholar 

  39. Takayama T, Miyanishi K, Hayashi T, et al., 2006. Colorectal cancer: genetics of development and metastasis. J Gastroenterol, 41(3):185–192. https://doi.org/10.1007/s00535-006-1801-6

    CAS  PubMed  Article  Google Scholar 

  40. Thornton TM, Rincon M, 2009. Non-classical p38 MAP kinase functions: cell cycle checkpoints and survival. Int J Biol Sci, 5(1):44–51. https://doi.org/10.7150/ijbs.5.44

    CAS  PubMed  Article  Google Scholar 

  41. Trivedy CR, Craig G, Warnakulasuriya S, 2002. The oral health consequences of chewing areca nut. Addict Biol, 7(1):115–125. https://doi.org/10.1080/13556210120091482

    CAS  PubMed  Article  Google Scholar 

  42. Wagner EF, Nebreda ÁR, 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer, 9(8):537–549. https://doi.org/10.1038/nrc2694

    CAS  PubMed  Article  Google Scholar 

  43. Widowati W, Wijaya L, Wargasetia TL, et al., 2013. Antioxidant, anticancer, and apoptosis-inducing effects of Piper extracts in HeLa cells. J Exp Integr Med, 3(3):225–230. https://doi.org/10.5455/jeim.160513.or.074

    Article  Google Scholar 

  44. Wigmore PM, Mustafa S, El-Beltagy M, et al., 2010. Effects of 5-FU. In: Raffa RB, Tallarida RJ (Eds.), Chemo Fog: Cancer Chemotherapy-Related Cognitive Impairment. Springer, New York, p.157–164. https://doi.org/10.1007/978-1-4419-6306-2_20

    Google Scholar 

  45. Wiman KG, 2010. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene, 29(30):4245–4252. https://doi.org/10.1038/onc.2010.188

    CAS  PubMed  Article  Google Scholar 

  46. Zawacka-Pankau J, Selivanova G, 2015. Pharmacological reactivation of p53 as a strategy to treat cancer. J Intern Med, 277(2):248–259. https://doi.org/10.1111/joim.12336

    CAS  PubMed  Article  Google Scholar 

  47. Zhang N, Yin Y, Xu SJ, et al., 2008. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 13(8):1551–1569. https://doi.org/10.3390/molecules13081551

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

This reasearch was supported by the Taylor’s Research Grant Scheme (No. TRGS/MFS/2/2013/SBS/003), Malaysia. We thank Taylor’s University and Forest Research Institute Malaysia (FRIM) for the laboratory facilities.

Author information

Affiliations

Authors

Contributions

Aiysvariyah RAJEDADRAM, Kar Yong PIN, Sui Kiong LING, and See Wan YAN performed the experimental research and data analysis. Mee Lee LOOI contributed to the study design and data analysis. Mee Lee LOOI and Aiysvariyah RAJEDADRAM contributed to the writing and editing of the manuscript. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Corresponding author

Correspondence to Mee Lee Looi.

Ethics declarations

Aiysvariyah RAJEDADRAM, Kar Yong PIN, Sui Kiong LING, See Wan YAN, and Mee Lee LOOI declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Electronic Supplementary Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajedadram, A., Pin, K.Y., Ling, S.K. et al. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. J. Zhejiang Univ. Sci. B 22, 112–122 (2021). https://doi.org/10.1631/jzus.B2000446

Download citation

Key words

  • Piper betle
  • Hydroxychavicol (HC)
  • Cell cycle
  • Apoptosis
  • c-Jun N-terminal kinase (JNK)
  • P38 mitogen-activated protein kinase (MAPK)

关键词

  • 蒌叶
  • 羟基胡椒酚 (HC)
  • 细胞周期
  • 细胞凋亡
  • c-Jun 氨基末端激酶 (JNK)
  • P38 丝裂原活化蛋白激酶 (MAPK)