Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 7, pp 541–549 | Cite as

Recent advances in the neural regulation of feeding behavior in adult Drosophila

  • Gao-hang Wang
  • Li-ming WangEmail author


The ability to maintain metabolic homeostasis is a key capability critical for the survival and well-being of animals living in constantly changing environments. Metabolic homeostasis depends on neuromodulators, such as biogenic amines, neuropeptides, and hormones, to signal changes in animals’ internal metabolic status and to orchestrate their behaviors accordingly. An important example is the regulation of feeding behavior by conserved molecular and cellular mechanisms across the animal kingdom. Its relatively simple brain coupled with well-characterized genetics and behavioral paradigms makes the fruit fly Drosophila melanogaster an excellent model for investigating the neuromodulatory regulation of feeding behavior. In this review we discuss the neuromodulators and neural circuits that integrate the internal physiological status with external sensory cues and modulate feeding behavior in adult fruit flies. Studies show that various specific aspects of feeding behavior are subjected to unique neuromodulatory regulation, which permits fruit flies to maintain metabolic homeostasis effectively.

Key words

Feeding behavior Drosophila melanogaster Neuromodulatory regulation Internal status Sensory processing 





进食行为 果蝇 神经调节 代谢状态 感知信号传递 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn JE, Chen Y, Amrein H, 2017. Molecular basis of fatty acid taste in Drosophila. eLife, 6:e30115. CrossRefGoogle Scholar
  2. Al-Anzi B, Armand E, Nagamei P, et al., 2010. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol, 20(11):969–978. CrossRefGoogle Scholar
  3. Bharucha KN, Tarr P, Zipursky SL, 2008. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol, 211:3103–3110. CrossRefGoogle Scholar
  4. Bjordal M, Arquier N, Kniazeff J, et al., 2014. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell, 156(3): 510–521. CrossRefGoogle Scholar
  5. Carvalho GB, Kapahi P, Anderson DJ, et al., 2006. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol, 16(7):692–696. CrossRefGoogle Scholar
  6. Chen YCD, Dahanukar A, 2017. Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep, 21(10):2978–2991. CrossRefGoogle Scholar
  7. Dahanukar A, Foster K, van der Goes van Naters WM, et al., 2001. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci, 4(12):1182–1186. CrossRefGoogle Scholar
  8. Dahanukar A, Lei YT, Kwon JY, et al., 2007. Two Gr genes underlie sugar reception in Drosophila. Neuron, 56(3): 503–516. CrossRefGoogle Scholar
  9. Dethier VG, 1976. The Hungry Fly. Harvard University Press, Cambridge, p.4–118.Google Scholar
  10. Dus M, Min S, Keene AC, et al., 2011. Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci USA, 108(28):11644–11649. CrossRefGoogle Scholar
  11. Dus M, Ai MR, Suh GSB, 2013. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila. Nat Neurosci, 16(5):526–528. CrossRefGoogle Scholar
  12. Dus M, Lai JSY, Gunapala KM, et al., 2015. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1):139–151. CrossRefGoogle Scholar
  13. Edgecomb RS, Harth CE, Schneiderman AM, 1994. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol, 197:215–235.Google Scholar
  14. Freeman EG, Dahanukar A, 2015. Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol, 34:140–148. CrossRefGoogle Scholar
  15. Fujii S, Yavuz A, Slone J, et al., 2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr Biol, 25(5):621–627. CrossRefGoogle Scholar
  16. Ganguly A, Pang LS, Duong VK, et al., 2017. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep, 18(3):737–750. CrossRefGoogle Scholar
  17. Géminard C, Rulifson EJ, Léopold P, 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab, 10(3):199–207. CrossRefGoogle Scholar
  18. Grönke S, Müller G, Hirsch J, et al., 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol, 5(6):e137. CrossRefGoogle Scholar
  19. Hergarden AC, Tayler TD, Anderson DJ, 2012. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci USA, 109(10):3967–3972. CrossRefGoogle Scholar
  20. Inagaki HK, De-Leon SBT, Wong AM, et al., 2012. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell, 148(3):583–595. CrossRefGoogle Scholar
  21. Inagaki HK, Panse KM, Anderson DJ, 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4):806–820. CrossRefGoogle Scholar
  22. Isabel G, Martin JR, Chidami S, et al., 2005. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol, 288(2):R531–R538. CrossRefGoogle Scholar
  23. Jiao YC, Moon SJ, Montell C, 2007. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA, 104(35):14110–14115. CrossRefGoogle Scholar
  24. Jiao YC, Moon SJ, Wang XY, et al., 2008. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol, 18(22):1797–1801. CrossRefGoogle Scholar
  25. Joseph RM, Carlson JR, 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet, 31(12):683–695. CrossRefGoogle Scholar
  26. Joseph RM, Sun JS, Tam E, et al., 2017. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife, 6:e24992. CrossRefGoogle Scholar
  27. Kim SK, Rulifson EJ, 2004. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 431(7006):316–320. CrossRefGoogle Scholar
  28. Kim SM, Su CY, Wang JW, 2017. Neuromodulation of innate behaviors in Drosophila. Annu Rev Neurosci, 40:327–348. CrossRefGoogle Scholar
  29. Ko KI, Root CM, Lindsay SA, et al., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife, 4:e08298. CrossRefGoogle Scholar
  30. Koç H, Vinyard CJ, Essick GK, et al., 2013. Food oral processing: conversion of food structure to textural perception. Annu Rev Food Sci Technol, 4:237–266. CrossRefGoogle Scholar
  31. LeDue EE, Chen YC, Jung AY, et al., 2015. Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat Commun, 6:6667. CrossRefGoogle Scholar
  32. LeDue EE, Mann K, Koch E, et al., 2016. Starvation-induced depotentiation of bitter taste in Drosophila. Curr Biol, 26(21):2854–2861. CrossRefGoogle Scholar
  33. Lee G, Park JH, 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1):311–323. CrossRefGoogle Scholar
  34. Lee Y, Moon SJ, Montell C, 2009. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA, 106(11):4495–4500. CrossRefGoogle Scholar
  35. Lee Y, Kim SH, Montell C, 2010. Avoiding DEET through insect gustatory receptors. Neuron, 67(4):555–561. CrossRefGoogle Scholar
  36. Lee Y, Kang MJ, Shim J, et al., 2012. Gustatory receptors required for avoiding the insecticide L-canavanine. J Neurosci, 32(4):1429–1435. CrossRefGoogle Scholar
  37. Liu QL, Tabuchi M, Liu S, et al., 2017. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science, 356(6337):534–539. CrossRefGoogle Scholar
  38. Marella S, Mann K, Scott K, 2012. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron, 73(5):941–950. CrossRefGoogle Scholar
  39. Miyamoto T, Slone J, Song XY, et al., 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 151(5):1113–1125. CrossRefGoogle Scholar
  40. Moon SJ, Lee Y, Jiao YC, et al., 2009. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol, 19(19):1623–1627. CrossRefGoogle Scholar
  41. Murata S, Brockmann A, Tanimura T, 2017. Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila. J Exp Biol, 220:3231–3237. CrossRefGoogle Scholar
  42. Olds WH, Xu T, 2014. Regulation of food intake by mechanosensory ion channels in enteric neurons. eLife, 3:e04402. CrossRefGoogle Scholar
  43. Park JY, Dus M, Kim S, et al., 2016. Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Curr Biol, 26(15):1965–1974. CrossRefGoogle Scholar
  44. Piper MDW, Blanc E, Leitão-Goncalves R, et al., 2014. A holidic medium for Drosophila melanogaster. Nat Methods, 11(1):100–105. CrossRefGoogle Scholar
  45. Pool AH, Scott K, 2014. Feeding regulation in Drosophila. Curr Opin Neurobiol, 29:57–63. CrossRefGoogle Scholar
  46. Pool AH, Kvello P, Mann K, et al., 2014. Four gabaergic interneurons impose feeding restraint in Drosophila. Neuron, 83(1):164–177. CrossRefGoogle Scholar
  47. Rajan A, Perrimon N, 2012. Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 151(1):123–137. CrossRefGoogle Scholar
  48. Ribeiro C, Dickson BJ, 2010. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol, 20(11):1000–1005. CrossRefGoogle Scholar
  49. Root CM, Ko KI, Jafari A, et al., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1):133–144. CrossRefGoogle Scholar
  50. Sánchez-Alcañiz JA, Zappia G, Marion-Poll F, et al., 2017. A mechanosensory receptor required for food texture detection in Drosophila. Nat Commun, 8:14192. CrossRefGoogle Scholar
  51. Scott K, 2018. Gustatory processing in Drosophila melanogaster. Annu Rev Entomol, 63:15–30. CrossRefGoogle Scholar
  52. Slone J, Daniels J, Amrein H, 2007. Sugar receptors in Drosophila. Curr Biol, 17(20):1809–1816. CrossRefGoogle Scholar
  53. Steck K, Walker SJ, Itskov PM, et al., 2018. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife, 7:e31625. CrossRefGoogle Scholar
  54. Stocker RF, 1994. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res, 275(1):3–26. CrossRefGoogle Scholar
  55. Sun JH, Liu C, Bai XB, et al., 2017. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat Commun, 8:14161. CrossRefGoogle Scholar
  56. Thorne N, Chromey C, Bray S, et al., 2004. Taste perception and coding in Drosophila. Curr Biol, 14(12):1065–1079. CrossRefGoogle Scholar
  57. Tian YJ, Wang LM, 2018. Octopamine mediates proteinseeking behavior in mated female Drosophila. Cell Discov, 4:66. CrossRefGoogle Scholar
  58. Ueno K, Ohta M, Morita H, et al., 2001. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol, 11(18): 1451–1455. CrossRefGoogle Scholar
  59. Vargas MA, Luo NG, Yamaguchi A, et al., 2010. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol, 20(11):1006–1011. CrossRefGoogle Scholar
  60. Walker SJ, Corrales-Carvajal VM, Ribeiro C, 2015. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol, 25(20): 2621–2630. CrossRefGoogle Scholar
  61. Weiss LA, Dahanukar A, Kwon JY, et al., 2011. The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69(2):258–272. CrossRefGoogle Scholar
  62. Yang Z, Yu Y, Zhang V, et al., 2015. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci USA, 112(16):5219–5224. CrossRefGoogle Scholar
  63. Yang Z, Huang R, Fu X, et al., 2018. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res, 28(10):1013–1025. CrossRefGoogle Scholar
  64. Yapici N, Cohn R, Schusterreiter C, et al., 2016. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell, 165(3):715–729. CrossRefGoogle Scholar
  65. Yu Y, Huang R, Ye J, et al., 2016. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife, 5:e15693. CrossRefGoogle Scholar
  66. Zhan YP, Liu L, Zhu Y, 2016. Taotie neurons regulate appetite in Drosophila. Nat Commun, 7:13633. CrossRefGoogle Scholar
  67. Zhang YV, Aikin TJ, Li ZZ, et al., 2016. The basis of food texture sensation in Drosophila. Neuron, 91(4):863–877. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouChina

Personalised recommendations