Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 7, pp 605–612 | Cite as

Exosome-derived galectin-9 may be a novel predictor of rejection and prognosis after liver transplantation

  • Ai-bin Zhang
  • Yi-fan Peng
  • Jun-jun Jia
  • Yu Nie
  • Shi-yu Zhang
  • Hai-yang Xie
  • Lin Zhou
  • Shu-sen ZhengEmail author


Acute cellular rejection (ACR) remains a major concern after liver transplantation. Predicting and monitoring acute rejection by non-invasive methods are very important for guiding the use of immunosuppressive drugs. Many studies have shown that exosomes and their contents are potential biomarkers for various liver diseases. Here, we identify and validate the role of exosomes and galectin-9 in ACR after liver transplantation. Exosomes were isolated from three sets of paired patients, with and without ACR, and the proteins within the exosomes were isolated and identified. Candidate proteins were then validated using a tissue microarray containing resected liver samples from 73 ACR and 63 non-rejection patients. Finally, protein expression and clinical manifestations were included in Kaplan-Meier survival and Cox regression analyses. Circulating exosomes were isolated from ACR and non-rejection patients and characterized using transmission electron microscopy and western blotting for CD63/CD81. Western blotting experiments revealed higher levels of galectin-9 protein in circulating exosomes from ACR recipients. Immunohistochemical analysis of the tissue microarray showed that the expression of galectin-9 in resected liver was significantly higher in the ACR group than in the non-rejection group (P<0.05). Higher levels of galectin-9 expression in resected livers were associated with poorer prognosis (P<0.05). Exosome-derived galectin-9 may be a novel predictor of rejection and prognosis after liver transplantation.

Key words

Liver transplantation Acute cellular rejection Exosome Galectin-9 

外泌体来源的半乳糖凝集素-9 预测肝移植术后排斥发生及预后


目的: 外泌体及其内容物是各种肝脏疾病的潜在生物标志物。本研究探索外泌体及其内容物在肝移植排斥反应及预后中的作用。

创新点: 本研究发现外泌体及内含物半乳糖凝集素-9(galectin-9)在肝移植术后排斥及预后预测中发挥重要作用。

方法: 分别从急性排斥和肝功能稳定患者提取外泌体,进行分离、鉴定并检测其内含蛋白。候选蛋白通过在73 个急性排斥病人和63 个肝功能稳定病人切除肝的组织芯片中进行验证。最后将蛋白表达量和临床参数纳入Kaplan-Meier 生存率和Cox 回归分析。

结论: 外泌体来源的galectin-9 可作为预测肝移植术后排斥发生及预后的生物学指标。


肝移植 急性排斥反应 外泌体 半乳糖凝集素-9 (Galectin-9) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashokkumar C, Soltys K, Mazariegos G, et al., 2017. Predicting cellular rejection with a cell-based assay: preclinical evaluation in children. Transplantation, 101(1):131–140. CrossRefGoogle Scholar
  2. Boix F, Millan O, san Segundo D, et al., 2016. High expression of CD38, CD69, CD95 and CD154 biomarkers in cultured peripheral T lymphocytes correlates with an increased risk of acute rejection in liver allograft recipients. Immunobiology, 221(5):595–603. CrossRefGoogle Scholar
  3. Chagan-Yasutan H, Shiratori B, Siddiqi UR, et al., 2010. The increase of plasma galectin-9 in a patient with insulin allergy: a case report. Clin Mol Allergy, 8:12. CrossRefGoogle Scholar
  4. Chen DJ, Peng WH, Jiang H, et al., 2017. Noninvasive detection of acute renal allograft rejection by measurement of soluble Tim-3 in urine. Mol Med Rep, 16(1):915–921. CrossRefGoogle Scholar
  5. Dardalhon V, Anderson AC, Karman J, et al., 2010. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol, 185(3):1383–1392. CrossRefGoogle Scholar
  6. Demetris AJ, Bellamy C, Hübscher SG, et al., 2016. 2016 comprehensive update of the Banff Working Group on Liver Allograft Pathology: introduction of antibody-mediated rejection. Am J Transplant, 16(10):2816–2835. CrossRefGoogle Scholar
  7. Dieudé M, Bell C, Turgeon J, et al., 2015. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med, 7(318):318ra200. CrossRefGoogle Scholar
  8. Gupta S, Thornley TB, Gao WD, et al., 2012. Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs. J Clin Invest, 122(7):2395–2404. CrossRefGoogle Scholar
  9. Huang HT, Lu YF, Zhou T, et al., 2018. Innate immune cells in immune tolerance after liver transplantation. Front Immunol, 9:2401. CrossRefGoogle Scholar
  10. Kerr N, García-Contreras M, Abbassi S, et al., 2018. Inflammasome proteins in serum and serum-derived extracellular vesicles as biomarkers of stroke. Front Mol Neurosci, 11:309. CrossRefGoogle Scholar
  11. Kim N, Yoon YI, Yoo HJ, et al., 2016. Combined detection of serum IL-10, IL-17, and CXCL10 predicts acute rejection following adult liver transplantation. Mol Cells, 39(8): 639–644. CrossRefGoogle Scholar
  12. Kurose Y, Wada J, Kanzaki M, et al., 2013. Serum galectin-9 levels are elevated in the patients with type 2 diabetes and chronic kidney disease. BMC Nephrol, 14:23. CrossRefGoogle Scholar
  13. Lazar E, Benedek T, Korodi S, et al., 2018. Stem cell-derived exosomes—an emerging tool for myocardial regeneration. World J Stem Cells, 10(8):106–115. CrossRefGoogle Scholar
  14. Lee EC, Kim SH, Park SJ, 2017. Outcomes after liver transplantation in accordance with ABO compatibility: a systematic review and meta-analysis. World J Gastroenterol, 23(35):6516–6533. CrossRefGoogle Scholar
  15. Li YM, Shi YY, Li Y, et al., 2018. Soluble Tim-3 and Gal-9 are associated with renal allograft dysfunction in kidney transplant recipients: a cross-sectional study. Int Immunopharmacol, 55:330–335. CrossRefGoogle Scholar
  16. Lim JH, Lee CH, Kim KY, et al., 2018. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: a cross-sectional study. PLoS ONE, 13(9):e0204204. CrossRefGoogle Scholar
  17. Meszaros M, Ursic-Bedoya J, Faure S, et al., 2019. Immunosuppression minimization trials in liver transplantation: can we predict humoral response to assess eligibility? Hepatology, 69(5):2302–2303. CrossRefGoogle Scholar
  18. Mousavi S, Moallem R, Hassanian SM, et al., 2019. Tumor-derived exosomes: potential biomarkers and therapeutic target in the treatment of colorectal cancer. J Cell Physiol, 234(8):12422–12432. CrossRefGoogle Scholar
  19. Naderi-Meshkin H, Lai X, Amirkhah R, et al., 2019. Exosomal lncRNAs and cancer: connecting the missing links. Bioinformatics, 35(2):352–360. CrossRefGoogle Scholar
  20. Naka EL, Ponciano VC, Cenedeze MA, et al., 2009. Detection of the Tim-3 ligand, galectin-9, inside the allograft during a rejection episode. Int Immunopharmacol, 9(6):658–662. CrossRefGoogle Scholar
  21. Pike R, Thomas N, Workman S, et al., 2016. PD1-expressing T cell subsets modify the rejection risk in renal transplant patients. Front Immunol, 7:126. CrossRefGoogle Scholar
  22. Qiao XW, Jiang K, Nie J, et al., 2014. Increased expression of Tim-3 and its ligand galectin-9 in rat allografts during acute rejection episodes. Biochem Biophys Res Commun, 445(3):542–548. CrossRefGoogle Scholar
  23. Raschzok N, Reutzel-Selke A, Schmuck RB, et al., 2015. CD44 and CXCL9 serum protein levels predict the risk of clinically significant allograft rejection after liver transplantation. Liver Transpl, 21(9):1195–1207. CrossRefGoogle Scholar
  24. Saitoh H, Ashino Y, Chagan-Yasutan H, et al., 2012. Rapid decrease of plasma galectin-9 levels in patients with acute HIV infection after therapy. Tohoku J Exp Med, 228(2): 157–161. CrossRefGoogle Scholar
  25. Sakuishi K, Jayaraman P, Behar SM, et al., 2011. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol, 32(8):345–349. CrossRefGoogle Scholar
  26. Schlegel A, Linecker M, Kron P, et al., 2017. Risk assessment in high- and low-meld liver transplantation. Am J Transplant, 17(4):1050–1063. CrossRefGoogle Scholar
  27. Shen T, Lin BY, Jia JJ, et al., 2014. A modified protocol with rituximab and intravenous immunoglobulin in emergent ABO-incompatible liver transplantation for acute liver failure. Hepatobiliary Pancreat Dis Int, 13(4):395–401. CrossRefGoogle Scholar
  28. Sood S, Haifer C, Yu LJ, et al., 2017. A novel immune function biomarker identifies patients at risk of clinical events early following liver transplantation. Liver Transpl, 23(4):487–497. CrossRefGoogle Scholar
  29. Su EW, Bi SG, Kane LP, 2011. Galectin-9 regulates T helper cell function independently of Tim-3. Glycobiology, 21(10): 1258–1265. CrossRefGoogle Scholar
  30. Tang ZH, Liang SW, Potter J, et al., 2013. Tim-3/galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease. J Immunol, 190(4):1788–1796. CrossRefGoogle Scholar
  31. Vallabhajosyula P, Korutla L, Habertheuer A, et al., 2017. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest, 127(4):1375–1391. CrossRefGoogle Scholar
  32. van den Hoogen LL, van Roon JAG, Mertens JS, et al., 2018. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis, 77(12): 1810–1814. CrossRefGoogle Scholar
  33. Vitalone MJ, Wei L, Fujiki M, et al., 2016. Liver microRNA profile of induced allograft tolerance. Transplantation, 100(4):781–790. CrossRefGoogle Scholar
  34. Wang Y, Zhang M, Liu ZW, et al., 2014. The ratio of circulating regulatory T cells (Tregs)/Th17 cells is associated with acute allograft rejection in liver transplantation. PLoS ONE, 9(11):e112135. CrossRefGoogle Scholar
  35. Zhou YX, Yang XJ, Zhang H, et al., 2015. The roles of T helper type 17/regulatory T cells in acute rejection after liver transplantation in rats. Transplantation, 99(6):1126–1131. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.NHFPC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated HospitalZhejiang UniversityHangzhouChina
  3. 3.Organ Transplant Center, the First Affiliated HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations