Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 12, pp 1121–1131 | Cite as

Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii

  • Xiao-dong Deng
  • Jia-jia Cai
  • Xiao-wen Fei
Article

Abstract

Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.

Key words

Phosphatidate phosphohydrolase 2 Triacylglycerol biosynthesis RNAi Chlamydomonas reinhardtii Nitrogen deprivation Over-expression 

CLC number

Q291 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11585_2013_3554_MOESM1_ESM.pdf (206 kb)
Supplementary material, approximately 205 KB.
11585_2013_3554_MOESM2_ESM.pdf (216 kb)
Supplementary material, approximately 215 KB.

References

  1. Brindley, D.N., 1984. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog. Lipid Res., 23(3): 115–133. [doi:10.1016/0163-7827(84)90001-8]PubMedCrossRefGoogle Scholar
  2. Brindley, D.N., 2004. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J. Cell Biochem., 92(5):900–912. [doi:10.1002/jcb.20126]PubMedCrossRefGoogle Scholar
  3. Carman, G.M., 1997. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli. BBA-Lipid. Lipid Metab., 1348(1–2):45–55. [doi:10.1016/S0005-2760(97)00095-7]CrossRefGoogle Scholar
  4. Carman, G.M., Henry, S.A., 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res., 38(5–6):361–399. [doi:10.1016/S0163-7827(99)00010-7]PubMedCrossRefGoogle Scholar
  5. Chae, M., Han, G.S., Carman, G.M., 2012. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. J. Biol. Chem., 287(48):40186–40196. [doi:10.1074/jbc.M112.421776]PubMedCrossRefGoogle Scholar
  6. Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q., 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth., 77(1):41–47. [doi:10.1016/j.mimet.2009.01.001]CrossRefGoogle Scholar
  7. Chou, K.C., 2013. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 9(6): 1092–1100. [doi:10.1039/c3mb25555g]PubMedCrossRefGoogle Scholar
  8. Chou, K.C., Shen, H.B., 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3(2):153–162. [doi:10.1038/nprot.2007.494]PubMedCrossRefGoogle Scholar
  9. Chou, K.C., Shen, H.B., 2010a. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE, 5(4):e9931. [doi:10.1371/journal.pone.0009931]PubMedCrossRefGoogle Scholar
  10. Chou, K.C., Shen, H.B., 2010b. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2(10): 1090–1103. [doi:10.4236/ns.2010.210136]Google Scholar
  11. Chou, K.C., Shen, H.B., 2010c. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 5(6):e11335. [doi:10.1371/journal.pone.0011335]PubMedCrossRefGoogle Scholar
  12. Chou, K.C., Wu, Z.C., Xiao, X., 2011. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 6(3):e18258. [doi:10.1371/journal.pone.0018258]PubMedCrossRefGoogle Scholar
  13. Chou, K.C., Wu, Z.C., Xiao, X., 2012. iLoc-Hum: using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 8(2):629–641. [doi:10.1039/c1mb05420a]PubMedCrossRefGoogle Scholar
  14. Deng, X.D., Li, Y.J., Fei, X.W., 2011. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii. Biomass Bioenerg., 35(3): 1811–1817. [doi:10.1016/j.biombioe.2011.01.005]CrossRefGoogle Scholar
  15. Deng, X.D., Gu, B., Li, Y.J., Hu, X.W., Guo, J.C., Fei, X.W., 2012. The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol. Plant, 5(4): 945–947. [doi:10.1093/mp/sss040]PubMedCrossRefGoogle Scholar
  16. Exton, J.H., 1994. Phosphatidylcholine breakdown and signal transduction. BBA-Lipid. Lipid Metab., 1212(1):26–42. [doi:10.1016/0005-2760(94)90186-4]CrossRefGoogle Scholar
  17. Fei, X.W., Deng, X.D., 2007. A novel Fe deficiency responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. Plant Cell Physiol., 48(10): 1496–1503. [doi:10.1093/pcp/pcm110]PubMedCrossRefGoogle Scholar
  18. Gao, C.F., Xiong, W., Zhang, Y.L., Yuan, W.Q., Wu, Q.Y., 2008. Rapid quantitation of lipid in microalgae by time- domain nuclear magnetic resonace. J. Microbiol. Meth., 75(3):437–440. [doi:10.1016/j.mimet.2008.07.019]CrossRefGoogle Scholar
  19. Hans, G.S., Wu, W.I., Carman, G.M., 2006. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem., 281: 9210–9218. [doi:10.1074/jbc.M600425200]Google Scholar
  20. Harris, E.H., 1989. The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA.Google Scholar
  21. Heinonen, J.K., Lahti, R.J., 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem., 113(2):313–317. [doi:10.1016/0003-2697 (81)90082-8]PubMedCrossRefGoogle Scholar
  22. Howe, A.G., McMaster, C.R., 2006. Regulation of phosphatidylcholine homeostasis by Sec14. Can. J. Physiol. Pharm., 84(1):29–38. [doi:10.1139/Y05-138]CrossRefGoogle Scholar
  23. Huang, G.H., Chen, G., Chen, F., 2009. Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg., 33(10):1386–1392. [doi:10.1016/j.biombioe.2009.05.022]CrossRefGoogle Scholar
  24. Kindle, K.L., 1990. High frequency nuclear transformation of Chlamydomonas reinhardtii. PNAS, 87(3):1228–1232. [doi:10.1073/pnas.87.3.1228]PubMedCrossRefGoogle Scholar
  25. Klug, R.M., Benning, C., 2001. Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl) homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. PNAS, 98(10):5910–5915. [doi:10.1073/pnas.101037998]PubMedCrossRefGoogle Scholar
  26. Li, Y.J., Fei, X.W., Deng, X.D., 2012. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenerg., 42:199–211. [doi:10.1016/j.biombioe.2012.03.010]CrossRefGoogle Scholar
  27. Liu, B., Benning, C., 2013. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotech., 24(2):300–309. [doi:10.1016/j.copbio.2012.08.008]PubMedCrossRefGoogle Scholar
  28. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta C_T }\) method. Methods, 25(4):402–408. [doi:10.1006/meth.2001.1262]PubMedCrossRefGoogle Scholar
  29. Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., et al., 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848): 245–250. [doi:10.1126/science.1143609]PubMedCrossRefGoogle Scholar
  30. Nanjundan, M., Possmayer, F., 2003. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am. J. Physiol. Lung Cell Mol. Physiol., 284:L1–L23. [doi:10.1152/ajpcell.00460.2002]PubMedGoogle Scholar
  31. Phan, J., Reue, K., 2005. Lipin, a lypodystrophy and obesity gene. Cell Metab., 1(1):73–83. [doi:10.1016/j.cmet.2004.12.002]PubMedCrossRefGoogle Scholar
  32. Pierrugues, O., Brutesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G.M., Thuriaux, P., Kazmaier, M., 2001. Lipid phosphate phosphatases in Arabidopsis regulation of the AtLPP1 gene in response to stress. J. Biol. Chem., 276(23):20300–20308. [doi:10.1074/jbc.M009726200]PubMedCrossRefGoogle Scholar
  33. Sambrook, J., Russell, D.W., 2001. Molecular Cloning: a Laboratory Manual (3-Volume Set). Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.Google Scholar
  34. Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., Siniossoglou, S., 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J., 24(11):1931–1941. [doi:10.1038/sj.emboj.7600672]PubMedCrossRefGoogle Scholar
  35. Sciorra, V.A., Morris, A.J., 2002. Roles for lipid phosphate phosphatases in regulation of cellular signaling. BBA-Mol. Cell Biol. Lipids, 1582(1–3):45–51. [doi:10.1016/S1388-1981(02)00136-1]CrossRefGoogle Scholar
  36. Smith, S.W., Weiss, S.B., Kennedy, E.P., 1957. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem., 228:915–922.PubMedGoogle Scholar
  37. Sorger, D., Daum, G., 2003. Triacylglycerol biosynthesis in yeast. Appl. Microbiol. Biotechnol., 61:289–299.PubMedGoogle Scholar
  38. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]PubMedCrossRefGoogle Scholar
  39. Testerink, C., Munnik, T., 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci., 10(8):368–375. [doi:10.1016/j.tplants.2005.06.002]PubMedCrossRefGoogle Scholar
  40. Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., 2005. Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering. Biochem. Biophys. Res. Commun., 327(4):993–998. [doi:10.1016/j.bbrc.2004.12.111]PubMedCrossRefGoogle Scholar
  41. Ullah, A.H.J., Sethumadhavan, K., Shockey, J., 2012. Measuring phosphatidic acid phosphohydrolase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods. Adv. Biol. Chem., 2(4):416–421. [doi:10.4236/abc.2012.24052]CrossRefGoogle Scholar
  42. Wu, Z.C., Xiao, X., Chou, K.C., 2011. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. BioSyst., 7:3287–3297. [doi:10.1039/C1MB05232B]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
  2. 2.School of ScienceHainan Medical CollegeHaikouChina

Personalised recommendations