Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 11, pp 1004–1012 | Cite as

Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties

  • Ling-hui Zeng
  • Hua-dan Zhang
  • Cai-ju Xu
  • Yu-jia Bian
  • Xue-jiao Xu
  • Qiang-min Xie
  • Rong-hua Zhang
Article

Abstract

A relationship between status epilepticus (SE) and oxidative stress has recently begun to be recognized. To explore whether the flavonoids extracted from licorice (LFs) have any protective effect on kainate (KA)-induced seizure in mice, we treated mice with LFs before and after KA injection. In KA-treated mice, we found that superoxide dismutase (SOD) activity decreased immediately after the onset of seizure at 1 h and then increased at 6 h. It returned to baseline 1 d after seizure and then increased again at 3, 7, and 28 d, while malondialdehyde (MDA) content remained at a high level at 1 h, 6 h, 3 d, 7 d, and 28 d, indicating a more oxidized status related to the presence of more reactive oxygen species (ROS). Treatment with LFs before KA injection reversed the seizure-induced change in SOD activity and MDA content at 1 h, 6 h, 3 d, 7 d, and 28 d. Treatment with LFs after seizure decreased KA-induced SOD activity and MDA content at 7 and 28 d. Also, LF pre- and post-KA treatments decreased seizure-induced neuronal cell death. Subsequently, Morris water maze tests revealed that the escape latency was significantly decreased and the number of target quadrant crossings was markedly increased in the LF-treated groups. Thus, our data indicate that LFs have protective effects on seizure-induced neuronal cell death and cognitive impairment through their anti-oxidative effects.

Key words

Seizure Kainate Flavonoid Licorice Antioxidant Malondialdehyde (MDA) Superoxide dismutase (SOD) 

CLC number

R962 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, E., Nassiri-Asl, M., Shafeei, M., Sheikhi, M., 2012. Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chem. Biol. Drug Des., 80(2):274–278. [doi:10.1111/j.1747-0285.2012.01400.x]PubMedCrossRefGoogle Scholar
  2. Aguiar, C.C., Almeida, A.B., Araújo, P.V., de Abreu, R.N., Chaves, E.M., do Vale, O.C., Macêdo, D.S., Woods, D.J., Fonteles, M.M., Vasconcelos, S.M., 2012. Oxidative stress and epilepsy: literature review. Oxid. Med. Cell. Longev., 2012:795259. [doi:10.1155/2012/795259]PubMedCrossRefGoogle Scholar
  3. Asha, M.K., Debraj, D., Prashanth, D., Edwin, J.R., Srikanth, H.S., Muruganantham, N., Dethe, S.M., Anirban, B., Jaya, B., Deepak, M., et al., 2013. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action. J. Ethnopharmacol., 145(2):581–586. [doi:10.1016/j.jep.2012.11.033]PubMedCrossRefGoogle Scholar
  4. Ashrafi, M.R., Shams, S., Nouri, M., Mohseni, M., Shabanian, R., Yekaninejad, M.S., Chegini, N., Khodadad, A., Safaralizadeh, R., 2007. A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia, 48(9):1750–1755. [doi:10.1111/j.1528-1167.2007.01143.x]PubMedCrossRefGoogle Scholar
  5. Bellissimo, M.I., Amado, D., Abdalla, D.S., Ferreira, E.C., Cavalheiro, E.A., Naffah-Mazzacoratti, M.G., 2001. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res., 46(2): 121–128. [doi:10.1016/S0920-1211(01)00269-8]PubMedCrossRefGoogle Scholar
  6. Ben-Ari, Y., Cossart, R., 2000. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci., 23(11):580–587. [doi:10.1016/S0166-2236(00)01659-3]PubMedCrossRefGoogle Scholar
  7. Ben-Menachem, E., Kyllerman, M., Marklund, S., 2000. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res., 40(1): 33–39. [doi:10.1016/S0920-1211(00)00096-6]PubMedCrossRefGoogle Scholar
  8. Bruce, A.J., Baudry, M., 1995. Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic. Biol. Med., 18(6):993–1002. [doi:10.1016/0891-5849(94)00218-9]PubMedCrossRefGoogle Scholar
  9. Chen, L.L., Feng, H.F., Mao, X.X., Ye, Q., Zeng, L.H., 2013. One hour of pilocarpine-induced status epilepticus is sufficient to develop chronic epilepsy in mice, and is associated with mossy fiber sprouting but not neuronal death. Neurosci. Bull., 29(3):295–302. [doi:10.1007/s12264-013-1310-6]PubMedCrossRefGoogle Scholar
  10. Elger, C.E., Schmidt, D., 2008. Modern management of epilepsy: a practical approach. Epilepsy Behav., 12(4): 501–539. [doi:10.1016/j.yebeh.2008.01.003]PubMedCrossRefGoogle Scholar
  11. Floyd, R., Carney, J., 1992. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol., 32(S1): S22–S27. [doi:10.1002/ana.410320706]PubMedCrossRefGoogle Scholar
  12. Frantseva, M.V., Perez Velazquez, J.L., Tsoraklidis, G., Mendonca, A.J., Adamchik, Y., Mills, L.R., Carlen, P.L., Burnham, M.W., 2000. Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience, 97(3):431–435. [doi:10.1016/S0306-4522(00)00041-5]PubMedCrossRefGoogle Scholar
  13. Freitas, R.M., 2009. Investigation of oxidative stress involvement in hippocampus in epilepsy model induced by pilocarpine. Neurosci. Lett., 462(3):225–229. [doi:10.1016/j.neulet.2009.07.037]PubMedCrossRefGoogle Scholar
  14. Freitas, R.M., Vasconcelos, S.M., Souza, F.C., Viana, G.S., Fonteles, M.M., 2005. Oxidative stress in the hippocampus after pilocarpine induced status epilepticus in Wistar rats. FEBS J., 272(6):1307–1312. [doi:10.1111/j.1742-4658.2004.04537.x]PubMedCrossRefGoogle Scholar
  15. Golechha, M., Chaudhry, U., Bhatia, J., Saluja, D., Arya, D.S., 2011. Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol. Pharm. Bull., 34(3):360–365. [doi:10.1248/bpb.34.360]PubMedCrossRefGoogle Scholar
  16. Jäger, A.K., Saaby, L., 2011. Flavonoids and the CNS. Molecules, 16(12):1471–1485. [doi:10.3390/molecules16021471]PubMedCrossRefGoogle Scholar
  17. Kovac, S., Domijan, A.M., Walker, M.C., Abramov, A.Y., 2012. Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J. Cell. Sci., 125(7): 1796–1806. [doi:10.1242/jcs.099176]PubMedCrossRefGoogle Scholar
  18. Lehtinen, M.K., Tegelberg, S., Schipper, H., Su, H., Zukor, H., Manninen, O., Kopra, O., Joensuu, T., Hakala, P., Bonni, A., et al., 2009. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J. Neurosci., 29(18):5910–5915. [doi:10.1523/JNEUROSCI.0682-09.2009]PubMedCrossRefGoogle Scholar
  19. Liu, Y.F., Gao, F., Li, X.W., Jia, R.H., Meng, X.D., Zhao, R., Jing, Y.Y., Wang, Y., Jiang, W., 2012. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res., 37(8): 1670–1680. [doi:10.1007/s11064-012-0771-8]PubMedGoogle Scholar
  20. Löscher, W., Schmidt, D., 2006. New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res., 69(3):183–272. [doi:10.1016/j.eplepsyres.2006.03.014]PubMedCrossRefGoogle Scholar
  21. Martinc, B., Grabnar, I., Vovk, T., 2012. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr. Neuropharmacol., 10(4):328–343. [doi:10.2174/157015912804143504]PubMedGoogle Scholar
  22. Nazıroğlu, M., Akay, M.B., Çelik, Ö., Yıldırım, M.İ., Balcı, E., Yürekli, V.A., 2013. Capparis ovata modulates brain oxidative toxicity and epileptic seizures in pentylentetrazol-induced epileptic rats. Neurochem. Res., 38(4):780–788. [doi:10.1007/s11064-013-0978-3]PubMedCrossRefGoogle Scholar
  23. Royle, S.J., Collins, F.C., Rupniak, H.T., Barnes, J.C., Anderson, R., 1999. Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res., 816(2):337–349. [doi:10.1016/S0006-8993(98)01122-6]PubMedCrossRefGoogle Scholar
  24. Ryan, K., Backos, D.S., Reigan, P., Patel, M., 2012. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci., 32(33):11250–11258. [doi:10.1523/JNEUROSCI.0907-12.2012]PubMedCrossRefGoogle Scholar
  25. Shiihara, T., Kato, M., Ichiyama, T., Takahashi, Y., Tanuma, N., Miyata, R., Hayasaka, K., 2006. Acute encephalopathy with refractory status epilepticus: bilateral mesial temporal and claustral, associated with a peripheral marker of oxidative DNA damage. J. Neurol. Sci., 250(1): 159–161. [doi:10.1016/j.jns.2006.07.002]PubMedCrossRefGoogle Scholar
  26. Shin, E.J., Ko, K.H., Kim, W.K., Chae, J.S., Yen, T.P., Kim, H.J., Wie, M.B., Kim, H.C., 2008. Role of glutathione peroxidase in the ontogeny of hippocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem. Int., 52(6):1134–1147. [doi:10.1016/j.neuint.2007.12.003]PubMedCrossRefGoogle Scholar
  27. Shin, E.J., Jeong, J.H., Chung, Y.H., Kim, W.K., Ko, K.H., Bach, J.H., Hong, J.S., Yoneda, Y., Kim, H.C., 2011. Role of oxidative stress in epileptic seizures. Neurochem. Int., 59(2):122–137. [doi:10.1016/j.neuint.2011.03.025]PubMedCrossRefGoogle Scholar
  28. Sun, Y.X., Tang, Y., Wu, A.L., Liu, T., Dai, X.L., Zheng, Q.S., Wang, Z.B., 2010. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. J. Asian Nat. Prod. Res., 12(12):1051–1060. [doi:10.1080/10286020.2010.535520]PubMedCrossRefGoogle Scholar
  29. Tejada, S., Sureda, A., Roca, C., Gamundí, A., Esteban, S., 2007. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res. Bull., 71(4):372–375. [doi:10.1016/j.brainresbull.2006.10.005]PubMedCrossRefGoogle Scholar
  30. Temkin, N.R., 2001. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia, 42(4):515–524. [doi:10.1046/j.1528-1157.2001.28900.x]PubMedCrossRefGoogle Scholar
  31. Wang, K.L., Hsia, S.M., Chan, C.J., Chang, F.Y., Huang, C.Y., Bau, D.T., Wang, P.S., 2013. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets, 17(4): 337–349. [doi:10.1517/14728222.2013.756869]PubMedCrossRefGoogle Scholar
  32. Xie, Y.C., Dong, X.W., Wu, X.M., Yan, X.F., Xie, Q.M., 2009. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int. Immunopharmacol., 9(2):194–200. [doi:10.1016/j.intimp.2008.11.004]PubMedCrossRefGoogle Scholar
  33. Zeng, L.H., Rensing, N.R., Wong, M., 2009. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci., 29(21):6964–6972. [doi:10.1523/JNEUROSCI.0066-09.2009]PubMedCrossRefGoogle Scholar
  34. Zhan, C., Yang, J., 2006. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res., 53(3): 303–309. [doi:10.1016/j.phrs.2005.12.008]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ling-hui Zeng
    • 1
  • Hua-dan Zhang
    • 1
  • Cai-ju Xu
    • 2
  • Yu-jia Bian
    • 1
  • Xue-jiao Xu
    • 1
  • Qiang-min Xie
    • 3
  • Rong-hua Zhang
    • 2
  1. 1.Department of PharmacyZhejiang University City CollegeHangzhouChina
  2. 2.Zhejiang Provincial Center for Disease Control and PreventionHangzhouChina
  3. 3.Department of Pharmacology, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations