Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 9, pp 829–836 | Cite as

Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences

  • Ya-e Zhao
  • Jun-xian Ma
  • Li Hu
  • Li-ping Wu
  • Manuel De Rojas


For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids.

Key words

Demodex folliculorum cox1 partial sequences Divergence Genetic relationship Phylogenetic tree 

CLC number

R384.4; R34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J.C., Walker, D., 1999. Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. PNAS, 96(3):992–995. [doi:10.1073/pnas.96.3.992]PubMedCrossRefGoogle Scholar
  2. de Rojas, M., Riazzo, C., Callejón, R., Guevara, D., Cutillas, C., 2012a. Morphobiometrical and molecular study of two populations of Demodex folliculorum from humans. Parasitol. Res., 110(1):227–233. [doi:10.1007/s00436-011-2476-3]PubMedCrossRefGoogle Scholar
  3. de Rojas, M., Riazzo, C., Callejon, R., Guevara, D., Cutillas, C., 2012b. Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs. Parasitol. Res., 111(5):2165–2172. [doi:10.1007/s00436-012-3067-7]PubMedCrossRefGoogle Scholar
  4. Desch, C., Nutting, W.B., 1972. Demodex folliculorum (Simon) & D. brevis akbulatova of man: redescription and revaluation. J. Parasitol., 58(1):169–177. [doi:10.2307/3278267]PubMedCrossRefGoogle Scholar
  5. Hebert, P.D.N., Ratnasingham, S., de Waard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proc. R. Soc. B., 270(s1):S96–S99. [doi:10.1098/rsbl.2003.0025]PubMedCrossRefGoogle Scholar
  6. Kumar, S., Nei, M., Dusley, J., Tamura, K., 2008. MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform., 9(4): 299–306. [doi:10.1093/bib/bbn017]PubMedCrossRefGoogle Scholar
  7. Li, C.P., 2009. Medical Arthropodology. People’s Medical Publishing House, Beijing, China (in Chinese).Google Scholar
  8. Liu, S.F., Chen, L.L., Dai, F.Q., Zhuang, Z.M., 2010. Application of DNA barcoding gene cox1 for classifying family Sciagenidae. Oceanol. Limnol. Sin., 41(2):223–231 (in Chinese).Google Scholar
  9. Morsy, T.A., el Okbi, M.M., el Said, A.M., Arafa, M.A., Sabry, A.H., 1995. Demodex (follicular mite) infesting a boy and his pet dog. J. Egypt. Soc. Parasitol., 25(2):509–512.PubMedGoogle Scholar
  10. Perna, N.T., Kocher, T.D., 1995. Patterns of nueleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol., 41(3):353–358. [doi:10.1007/BF01215182]PubMedCrossRefGoogle Scholar
  11. Ravera, I., Altet, L., Francino, O., Bardagí, M., Sánchez, A., Ferrer, L., 2011. Development of a real-time PCR to detect Demodex canis DNA in different tissue samples. Parasitol. Res., 108(2):305–308. [doi:10.1007/s00436-010-2062-0]PubMedCrossRefGoogle Scholar
  12. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]PubMedCrossRefGoogle Scholar
  13. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24): 4876–4882. [doi:10.1093/nar/25.24.4876]PubMedCrossRefGoogle Scholar
  14. Toops, E., Blagburn, B., Lenaghan, S., Kennis, R., MacDonald, J., Dykstra, C., 2010. Extraction and characterization of DNA from Demodex canis. J. Appl. Res. Vet. Med., 8(1):31–43.Google Scholar
  15. Tsao, W.C., Yeh, W.B., 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zool. Stud., 47(5):633–643.Google Scholar
  16. Wang, Y.P., Li, P., Bing, G.Q., 1998. A case report of human dermatitis caused by Canine Demodex. J. N. Bethune Univ. Med. Sci., 24(3):265 (in Chinese).Google Scholar
  17. Xie, H.X., Liu, S.L., Xu, Y.H., Xu, M.Q., 1982. Taxonomy of the family Demodicidae and new subspecies. Acta Zootaxon. Sin., 7(3):265–269 (in Chinese).Google Scholar
  18. Zhao, Y.E., Cheng, H., 2009. RAPD analysis and sequence alignment of genomic DNA of hair follicle mites Demodex folliculorum and D. brevis (Acari: Demodicidae). Acta Entomol. Sin., 52(11):1273–1279 (in Chinese).Google Scholar
  19. Zhao, Y.E., Wu, L.P., 2012a. RAPD-SCAR marker and genetic relationship analysis of three Demodex species (Acari: Demodicidae). Parasitol. Res., 110(6):2395–2402. [doi:10.1007/s00436-011-2778-5]PubMedCrossRefGoogle Scholar
  20. Zhao, Y.E., Wu, L.P., 2012b. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences. Parasitol. Res., 111(3):1113–1121. [doi:10.1007/s00436-012-2941-7]PubMedCrossRefGoogle Scholar
  21. Zhao, Y.E., Guo, N., Wu, L.P., 2009a. The effect of temperature on the viability of Demodex folliculorum and Demodex brevis. Parasitol. Res., 105(6):1623–1628. [doi:10.1007/s00436-009-1603-x]PubMedCrossRefGoogle Scholar
  22. Zhao, Y.E., Cheng, H., Xun, M., Wu, L.P., 2009b. Extraction and random primer PCR detection of genomic DNA of parasitic mites Demodex folliculorum and Demodex brevis (Acari: Demodicidae). Acta Entomol. Sin., 52(8): 929–933 (in Chinese).Google Scholar
  23. Zhao, Y.E., Guo, N., Wu, L.P., 2011. The influence of temperature and medium on viability of Demodex folliculorum and Demodex brevis (Acari: Demodicidae). Exp. Appl. Acarol., 54(4):421–425. [doi:10.1007/s10493-011-9445-5]PubMedCrossRefGoogle Scholar
  24. Zhao, Y.E., Wang, Z.H., Xu, Y., Xu, J.R., Liu, W.Y., Wei, M., Wang, C.Y., 2012a. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(10): 763–768. [doi:10.1631/jzus.B1200155]CrossRefGoogle Scholar
  25. Zhao, Y.E., Xu, J.R., Hu, L., Wu, L.P., Wang, Z.H., 2012b. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae). Exp. Parasitol., 131(1):45–51. [doi:10.1016/j.exppara.2012.02.025]PubMedCrossRefGoogle Scholar
  26. Zhao, Y.E., Wu, L.P., Hu, L., Xu, Y., Wang, Z.H., Liu, W.Y., 2012c. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA. Parasitol. Res., 111(5):2109–2114. [doi:10.1007/s00436-012-3058-8]PubMedCrossRefGoogle Scholar
  27. Zhou, J.Y., Zhang, Q., Tang, Y.L., Yu, F.Y., Zhao, S., 2010. On phylogenetic relationships of Teraponidae in coastal waters of China. Mar. Fish, 32(4):351–355 (in Chinese).Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ya-e Zhao
    • 1
  • Jun-xian Ma
    • 1
  • Li Hu
    • 1
  • Li-ping Wu
    • 1
  • Manuel De Rojas
    • 2
  1. 1.Department of Immunology and Pathogen BiologyXi’an Jiaotong University College of MedicineXi’anChina
  2. 2.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevillaSevillaSpain

Personalised recommendations