Skip to main content
Log in

Organic nitrogen components in soils from southeast China

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated.

Methods

Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis.

Results

K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools.

Conclusions

EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, H.Y., Xiao, J.Z., 1998. Experimental Research and StatisticalzAnalysis. World Book Press, Xi’an, China, p.120–128 (in Chinese).

    Google Scholar 

  • Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59(1):39–45. [doi:10.1097/00010694-194501000-00006]

    Article  CAS  Google Scholar 

  • Bregliani, M.M., Ros, G.H., Temminghoff, E.J.M., van Riemsdijk, W.H., 2010. Nitrogen mineralization in soils related to initial extractable organic nitrogen: effect of temperature and time. Commun. Soil Sci. Plant Anal., 41(11):1383–1398. [doi:10.1080/00103621003759387]

    Article  CAS  Google Scholar 

  • Bremner, J.M., 1965. Organic Forms of Nitrogen. In: Black, C.A. (Ed.), Methods of Soil Analysis. American Society of Agronomy, Madison, p.1238–1255.

    Google Scholar 

  • Cabrera, M.L., Beare, M.H., 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J., 57(4):1007–1012. [doi:10. 2136/sssaj1993.03615995005700040021x]

    Article  CAS  Google Scholar 

  • Chantigny, M.H., 2003. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 113(3–4):357–380. [doi:10.1016/S0016-7061(02)00370-1]

    Article  CAS  Google Scholar 

  • Chapin, F.S.III, Moilanen, L., Kielland, K., 1993. Preferential use of organic nitrogen for growth by a nonmycorrhizal arctic sedge. Nature, 361(6408):150–153. [doi:10.1038/361150a0]

    Article  CAS  Google Scholar 

  • Chen, C.R., Xu, Z.H., 2008. Analysis and behavior of soluble organic nitrogen in forest soils. J. Soils Sed., 8(6):363–378. [doi:10.1007/s11368-008-0044-y]

    Article  CAS  Google Scholar 

  • Christou, M., Avramides, E.J., Jones, D.L., 2006. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biol. Biochem., 38(8):2265–2277. [doi:10.1016/j. soilbio.2006.01.025]

    Article  CAS  Google Scholar 

  • DeAngelis, K.M., Lindow, S.E., Firestone, M.K., 2008. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. Fems. Microbiol. Ecol., 66(2):197–207. [doi:10. 1111/j.1574-6941.2008.00550.x]

    Article  PubMed  CAS  Google Scholar 

  • Ding, T.P., Tian, S.H., Sun, L., Wu, L.H., Zhou, J.X., Chen, Z.Y., 2008. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim. Cosmochim. Acta, 72(23):5600–5615. [doi:10.1016/j.gca.2008.09.006]

    Article  CAS  Google Scholar 

  • Ge, T.D., Song, S.W., Roberts, P., Jones, D.L., Huang, D.F., Iwasaki, K., 2009. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings. Environ. Exp. Bot., 66(3):357–361. [doi:10.1016/j.envexpbot.2009.05.004]

    Article  CAS  Google Scholar 

  • Haynes, R.J., 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv. Agron., 85:221–268. [doi:10.1016/S0065-2113(04)85005-3]

    Article  CAS  Google Scholar 

  • Herman, D.J., Johnson, K.K., Jaeger, C.H., Schwartz, E., Firestone, M.K., 2006. Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci. Soc. Am. J., 70(5):1504–1511. [doi:10.2136/sssaj2005.0113]

    Article  CAS  Google Scholar 

  • Hodge, A., 2001. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol., 151(3):725–734. [doi:10.1046/j.0028-646x.2001.00200.x]

    Article  CAS  Google Scholar 

  • Joergensen, R.G., Brookes, P.C., 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol. Biochem., 22(8):1023–1027. [doi:10.1016/0038-0717(90)90027-W]

    Article  CAS  Google Scholar 

  • Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F., Hodge, A., 2005a. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol. Biochem., 37(3):413–423. [doi:10.1016/j.soilbio.2004.08.008]

    Article  CAS  Google Scholar 

  • Jones, D.L., Shannon, D., Junvee-Fortune, T., Farrarc, J.F., 2005b. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol. Biochem., 37(1):179–181. [doi:10.1016/j.soilbio.2004.07.021]

    Article  CAS  Google Scholar 

  • Ke, Q.M., Lin, W.X., Huang, Z.F., Fang, J.L., Huang, M.Q., 2005. Simulation on the mathematical model of balanced fertilization in Pakchio vegetable crop. Chin. J. Eco-Agric., 13(1):119–121 (in Chinese).

    Google Scholar 

  • Keeney, D.R., 1982. Nitrogen—Availability Indices. In: Page, A.L., Miller, R.H. (Eds.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. SSSA, Madison, p.711–730.

    Google Scholar 

  • Keeney, D.R., Nelson, D.W., 1982. Nitrogen—Inorganic Forms. In: Page, A.L., Miller, R.H. (Eds.), Methods of Soil Analysis. Part 2, 2nd Ed. ASA and SSSA, Madison, WI, p.643–698.

    Google Scholar 

  • Kelley, K.R., Stevenson, F.J., 1985. Characterization and extractability of immobilized 15N from the soil microbial biomass. Soil Biol. Biochem., 17(4):517–523. [doi:10. 1016/0038-0717(85)90019-7]

    Article  Google Scholar 

  • Kielland, K., McFarland, J.W., Ruess, R.W., Olson, K., 2007. Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems, 10(3):360–368. [doi:10.1007/s10021-007-9037-8]

    Article  CAS  Google Scholar 

  • Lipson, D., Näsholm, T., 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128(3):305–316. [doi:10.1007/s004420100693]

    Article  Google Scholar 

  • Lu, R.K., 1999. Soil Chemical Analysis Methods in Agriculture. China Agricultural Sciences and Technical Press, Beijing, China (in Chinese).

    Google Scholar 

  • Lu, Y.H., Wassmann, R., Neue, H.U., Huang, C.Y., 2000. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci. Soc. Am. J., 64(6):2011–2017. [doi:10.2136/sssaj2000.6462011x]

    Article  CAS  Google Scholar 

  • Matsumoto, S., Ae, N., 2004. Characteristics of extractable soil organic nitrogen determined by using various chemical solutions and its significance for nitrogen uptake by crops. Soil Sci. Plant Nutr., 50(1):1–9. [doi:10. 1080/00380768.2004.10408446]

    Article  CAS  Google Scholar 

  • McDowell, W.H., Magill, A.H., Aitkenhead-Peterson, J.A., Aber, J.D., Merriam, J.L., Kaushal, S.S., 2004. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For. Ecol. Manage., 196(1):29–41. [doi:10.1016/j.foreco.2004.03.010]

    Article  Google Scholar 

  • Murphy, D.V., Macdonald, A.J., Stockdale, E.A., Goulding, K.W.T., Fortune, S., Gaunt, J.L., Poulton, P.R., Wakefield, J.A., Webster, C.P., Wilmer, W.S., 2000. Soluble organic nitrogen in agricultural soils. Biol. Fert. Soils, 30(5-6):374–387. [doi:10.1007/s003740050018]

    Article  CAS  Google Scholar 

  • Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol., 182(1):31–48. [doi:10.1111/j.1469-8137.2008.02751.x]

    Article  PubMed  Google Scholar 

  • Öhlund, J., Näsholm, T., 2001. Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol., 21(18):1319–1326. [doi:10.1093/treephys/21.18.1319]

    Article  PubMed  Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939. US Department of Agriculture, Washington, DC, USA, p.1–18.

    Google Scholar 

  • Raab, T.K., Lipson, D.A., Monson, R.K., 1996. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia, 108(3):488–494. [doi:10. 1007/BF00333725]

    Article  Google Scholar 

  • Raab, T.K., Lipson, D.A., Monson, R.K., 1999. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology, 80(7):2408–2419. [doi:10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2]

    Article  Google Scholar 

  • Reeve, J.R., Smith, J.L., Carpenter-Boggs, L., Reganold, J.P., 2009. Glycine, nitrate, and ammonium uptake by classic and modern wheat varieties in a short-term microcosm study. Biol. Fert. Soils, 45(7):723–732. [doi:10.1007/s00374-009-0383-x]

    Article  CAS  Google Scholar 

  • Ros, G.H., Hoffland, E., van Kessel, C., Temminghoff, E.J.M., 2009. Extractable and dissolved soil organic nitrogen: a quantitative assessment. Soil Biol. Biochem., 41(6): 1029–1039. [doi:10.1016/j.soilbio.2009.01.011]

    Article  CAS  Google Scholar 

  • Rothstein, D.E., 2009. Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry, 92(3):201–205. [doi:10.1007/s10533-009-9284-1]

    Article  CAS  Google Scholar 

  • Russell, R.S., 1982. Plant Root Systems, 1st Ed. McGraw-Hill, p.214.

  • Shi, G.R., 2004. Ecological effects of plant root exudates. Chin. J. Ecol., 23(1):97–101 (in Chinese).

    Google Scholar 

  • Stevenson, F.J., 1982. Nitrogen-Organic Forms. In: Page, A.L. (Ed.), Methods of Soil Analysis, Part 2. Madison, WI, American Society Agronomy, p.625–641.

    Google Scholar 

  • Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons Inc., New York, p.443.

    Google Scholar 

  • Willett, V.B., Green, J.J., Macdonald, A.J., Baddeley, J.A., Cadisch, G., Francis, S.M.J., Goulding, K.W.T., Saunders, G., Stockdale, E.A., Watson, C.A., et al., 2004. Impact of land use on soluble organic nitrogen in soil. Water Air Soil Poll., 4(6):53–60. [doi:10.1007/s11267-004-3013-5]

    Article  CAS  Google Scholar 

  • Wu, L.H., Mo, L.Y., Fan, Z.L., Tao, Q.N., Zhang, F.S., 2005. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere, 15(3):286–292.

    CAS  Google Scholar 

  • Yang, R., Yan, D.Y., Zhou, J.B., Wang, W.X., Ma, Q.A., 2007. Soluble organic nitrogen (SON) in different soils on the loess plateau of China. Acta Ecol. Sin., 27(4):1397–1403 (in Chinese).

    CAS  Google Scholar 

  • Zheng, S.A., Zhang, M.K., 2011. Effect of moisture regime on the redistribution of heavy metals in paddy soil. J. Environ. Sci.-China, 23(3):434–443. [doi:10.1016/S1001-0742(10)60428-7]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-huan Wu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30871595 and 31172032) and the Special Fund for Agro-Scientific Research in the Public Interest, China (No. 201003016)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Xy., Wu, Lh., Cao, Xc. et al. Organic nitrogen components in soils from southeast China. J. Zhejiang Univ. Sci. B 14, 259–269 (2013). https://doi.org/10.1631/jzus.B1200104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200104

Key words

CLC number

Navigation