Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 4, pp 259–269 | Cite as

Organic nitrogen components in soils from southeast China

  • Xian-you Chen
  • Liang-huan Wu
  • Xiao-chuang Cao
  • Yuan-hong Zhu
Article
  • 146 Downloads

Abstract

Objective

To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated.

Methods

Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis.

Results

K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools.

Conclusions

EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N.

Key words

Extractable organic nitrogen Amino acids Rhizosphere Bulk soil 

CLC number

S151.9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, H.Y., Xiao, J.Z., 1998. Experimental Research and StatisticalzAnalysis. World Book Press, Xi’an, China, p.120–128 (in Chinese).Google Scholar
  2. Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59(1):39–45. [doi:10.1097/00010694-194501000-00006]CrossRefGoogle Scholar
  3. Bregliani, M.M., Ros, G.H., Temminghoff, E.J.M., van Riemsdijk, W.H., 2010. Nitrogen mineralization in soils related to initial extractable organic nitrogen: effect of temperature and time. Commun. Soil Sci. Plant Anal., 41(11):1383–1398. [doi:10.1080/00103621003759387]CrossRefGoogle Scholar
  4. Bremner, J.M., 1965. Organic Forms of Nitrogen. In: Black, C.A. (Ed.), Methods of Soil Analysis. American Society of Agronomy, Madison, p.1238–1255.Google Scholar
  5. Cabrera, M.L., Beare, M.H., 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J., 57(4):1007–1012. [doi:10. 2136/sssaj1993.03615995005700040021x]CrossRefGoogle Scholar
  6. Chantigny, M.H., 2003. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 113(3–4):357–380. [doi:10.1016/S0016-7061(02)00370-1]CrossRefGoogle Scholar
  7. Chapin, F.S.III, Moilanen, L., Kielland, K., 1993. Preferential use of organic nitrogen for growth by a nonmycorrhizal arctic sedge. Nature, 361(6408):150–153. [doi:10.1038/361150a0]CrossRefGoogle Scholar
  8. Chen, C.R., Xu, Z.H., 2008. Analysis and behavior of soluble organic nitrogen in forest soils. J. Soils Sed., 8(6):363–378. [doi:10.1007/s11368-008-0044-y]CrossRefGoogle Scholar
  9. Christou, M., Avramides, E.J., Jones, D.L., 2006. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biol. Biochem., 38(8):2265–2277. [doi:10.1016/j. soilbio.2006.01.025]CrossRefGoogle Scholar
  10. DeAngelis, K.M., Lindow, S.E., Firestone, M.K., 2008. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. Fems. Microbiol. Ecol., 66(2):197–207. [doi:10. 1111/j.1574-6941.2008.00550.x]PubMedCrossRefGoogle Scholar
  11. Ding, T.P., Tian, S.H., Sun, L., Wu, L.H., Zhou, J.X., Chen, Z.Y., 2008. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim. Cosmochim. Acta, 72(23):5600–5615. [doi:10.1016/j.gca.2008.09.006]CrossRefGoogle Scholar
  12. Ge, T.D., Song, S.W., Roberts, P., Jones, D.L., Huang, D.F., Iwasaki, K., 2009. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings. Environ. Exp. Bot., 66(3):357–361. [doi:10.1016/j.envexpbot.2009.05.004]CrossRefGoogle Scholar
  13. Haynes, R.J., 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv. Agron., 85:221–268. [doi:10.1016/S0065-2113(04)85005-3]CrossRefGoogle Scholar
  14. Herman, D.J., Johnson, K.K., Jaeger, C.H., Schwartz, E., Firestone, M.K., 2006. Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci. Soc. Am. J., 70(5):1504–1511. [doi:10.2136/sssaj2005.0113]CrossRefGoogle Scholar
  15. Hodge, A., 2001. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol., 151(3):725–734. [doi:10.1046/j.0028-646x.2001.00200.x]CrossRefGoogle Scholar
  16. Joergensen, R.G., Brookes, P.C., 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol. Biochem., 22(8):1023–1027. [doi:10.1016/0038-0717(90)90027-W]CrossRefGoogle Scholar
  17. Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F., Hodge, A., 2005a. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol. Biochem., 37(3):413–423. [doi:10.1016/j.soilbio.2004.08.008]CrossRefGoogle Scholar
  18. Jones, D.L., Shannon, D., Junvee-Fortune, T., Farrarc, J.F., 2005b. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol. Biochem., 37(1):179–181. [doi:10.1016/j.soilbio.2004.07.021]CrossRefGoogle Scholar
  19. Ke, Q.M., Lin, W.X., Huang, Z.F., Fang, J.L., Huang, M.Q., 2005. Simulation on the mathematical model of balanced fertilization in Pakchio vegetable crop. Chin. J. Eco-Agric., 13(1):119–121 (in Chinese).Google Scholar
  20. Keeney, D.R., 1982. Nitrogen—Availability Indices. In: Page, A.L., Miller, R.H. (Eds.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. SSSA, Madison, p.711–730.Google Scholar
  21. Keeney, D.R., Nelson, D.W., 1982. Nitrogen—Inorganic Forms. In: Page, A.L., Miller, R.H. (Eds.), Methods of Soil Analysis. Part 2, 2nd Ed. ASA and SSSA, Madison, WI, p.643–698.Google Scholar
  22. Kelley, K.R., Stevenson, F.J., 1985. Characterization and extractability of immobilized 15N from the soil microbial biomass. Soil Biol. Biochem., 17(4):517–523. [doi:10. 1016/0038-0717(85)90019-7]CrossRefGoogle Scholar
  23. Kielland, K., McFarland, J.W., Ruess, R.W., Olson, K., 2007. Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems, 10(3):360–368. [doi:10.1007/s10021-007-9037-8]CrossRefGoogle Scholar
  24. Lipson, D., Näsholm, T., 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128(3):305–316. [doi:10.1007/s004420100693]CrossRefGoogle Scholar
  25. Lu, R.K., 1999. Soil Chemical Analysis Methods in Agriculture. China Agricultural Sciences and Technical Press, Beijing, China (in Chinese).Google Scholar
  26. Lu, Y.H., Wassmann, R., Neue, H.U., Huang, C.Y., 2000. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci. Soc. Am. J., 64(6):2011–2017. [doi:10.2136/sssaj2000.6462011x]CrossRefGoogle Scholar
  27. Matsumoto, S., Ae, N., 2004. Characteristics of extractable soil organic nitrogen determined by using various chemical solutions and its significance for nitrogen uptake by crops. Soil Sci. Plant Nutr., 50(1):1–9. [doi:10. 1080/00380768.2004.10408446]CrossRefGoogle Scholar
  28. McDowell, W.H., Magill, A.H., Aitkenhead-Peterson, J.A., Aber, J.D., Merriam, J.L., Kaushal, S.S., 2004. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For. Ecol. Manage., 196(1):29–41. [doi:10.1016/j.foreco.2004.03.010]CrossRefGoogle Scholar
  29. Murphy, D.V., Macdonald, A.J., Stockdale, E.A., Goulding, K.W.T., Fortune, S., Gaunt, J.L., Poulton, P.R., Wakefield, J.A., Webster, C.P., Wilmer, W.S., 2000. Soluble organic nitrogen in agricultural soils. Biol. Fert. Soils, 30(5-6):374–387. [doi:10.1007/s003740050018]CrossRefGoogle Scholar
  30. Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol., 182(1):31–48. [doi:10.1111/j.1469-8137.2008.02751.x]PubMedCrossRefGoogle Scholar
  31. Öhlund, J., Näsholm, T., 2001. Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol., 21(18):1319–1326. [doi:10.1093/treephys/21.18.1319]PubMedCrossRefGoogle Scholar
  32. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939. US Department of Agriculture, Washington, DC, USA, p.1–18.Google Scholar
  33. Raab, T.K., Lipson, D.A., Monson, R.K., 1996. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia, 108(3):488–494. [doi:10. 1007/BF00333725]CrossRefGoogle Scholar
  34. Raab, T.K., Lipson, D.A., Monson, R.K., 1999. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology, 80(7):2408–2419. [doi:10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2]CrossRefGoogle Scholar
  35. Reeve, J.R., Smith, J.L., Carpenter-Boggs, L., Reganold, J.P., 2009. Glycine, nitrate, and ammonium uptake by classic and modern wheat varieties in a short-term microcosm study. Biol. Fert. Soils, 45(7):723–732. [doi:10.1007/s00374-009-0383-x]CrossRefGoogle Scholar
  36. Ros, G.H., Hoffland, E., van Kessel, C., Temminghoff, E.J.M., 2009. Extractable and dissolved soil organic nitrogen: a quantitative assessment. Soil Biol. Biochem., 41(6): 1029–1039. [doi:10.1016/j.soilbio.2009.01.011]CrossRefGoogle Scholar
  37. Rothstein, D.E., 2009. Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry, 92(3):201–205. [doi:10.1007/s10533-009-9284-1]CrossRefGoogle Scholar
  38. Russell, R.S., 1982. Plant Root Systems, 1st Ed. McGraw-Hill, p.214.Google Scholar
  39. Shi, G.R., 2004. Ecological effects of plant root exudates. Chin. J. Ecol., 23(1):97–101 (in Chinese).Google Scholar
  40. Stevenson, F.J., 1982. Nitrogen-Organic Forms. In: Page, A.L. (Ed.), Methods of Soil Analysis, Part 2. Madison, WI, American Society Agronomy, p.625–641.Google Scholar
  41. Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons Inc., New York, p.443.Google Scholar
  42. Willett, V.B., Green, J.J., Macdonald, A.J., Baddeley, J.A., Cadisch, G., Francis, S.M.J., Goulding, K.W.T., Saunders, G., Stockdale, E.A., Watson, C.A., et al., 2004. Impact of land use on soluble organic nitrogen in soil. Water Air Soil Poll., 4(6):53–60. [doi:10.1007/s11267-004-3013-5]CrossRefGoogle Scholar
  43. Wu, L.H., Mo, L.Y., Fan, Z.L., Tao, Q.N., Zhang, F.S., 2005. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere, 15(3):286–292.Google Scholar
  44. Yang, R., Yan, D.Y., Zhou, J.B., Wang, W.X., Ma, Q.A., 2007. Soluble organic nitrogen (SON) in different soils on the loess plateau of China. Acta Ecol. Sin., 27(4):1397–1403 (in Chinese).Google Scholar
  45. Zheng, S.A., Zhang, M.K., 2011. Effect of moisture regime on the redistribution of heavy metals in paddy soil. J. Environ. Sci.-China, 23(3):434–443. [doi:10.1016/S1001-0742(10)60428-7]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xian-you Chen
    • 1
    • 2
  • Liang-huan Wu
    • 1
    • 2
  • Xiao-chuang Cao
    • 1
    • 2
  • Yuan-hong Zhu
    • 3
  1. 1.Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
  3. 3.Department of Crop and Soil Sciencesthe Pennsylvania State UniversityUniversity Park, PennsylvaniaUSA

Personalised recommendations