Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 7, pp 511–524 | Cite as

Conditional gene manipulation: Cre-ating a new biological era

  • Jian Zhang
  • Jing Zhao
  • Wen-jie Jiang
  • Xi-wei Shan
  • Xiao-mei Yang
  • Jian-gang Gao


To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, Flp-FRT, and ΦC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this “SSR+inducible” conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.

Key words

Site-specific recombinase Gene targeting Gene trapping Inducible systems ΦC31 system 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz, M., 2003. The Human Genome Project in retrospect. Adv. Genet., 50:231–261. [doi:10.1016/S0065-2660(03)50011-6]PubMedCrossRefGoogle Scholar
  2. Abuin, A., Hansen, G., Zambrowicz, B., 2007. Gene trap mutagenesis. Handb. Exp. Pharmacol., 178(1):129–147. [doi:10.1007/978-3-540-35109-2_6]PubMedCrossRefGoogle Scholar
  3. Adams, D.J., Biggs, P.J., Cox, T., Davies, R., van der Weyden, L., Jonkers, J., Smith, J., Plumb, B., Taylor, R., Nishijima, I., et al., 2004. Mutagenic insertion and chromosome engineering resource (MICER). Nat. Genet., 36(8):867–871. [doi:10.1038/ng1388]PubMedCrossRefGoogle Scholar
  4. Albert, H., Dale, E.C., Lee, E., Ow, D.W., 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J., 7(4):649–659. [doi:10.1046/j.1365-313X.1995.7040649.x]PubMedCrossRefGoogle Scholar
  5. Austin, C.P., Battey, J.F., Bradley, A., Bucan, M., Capecchi, M., Collins, F.S., Dove, W.F., Duyk, G., Dymecki, S., Eppig, J.T., et al., 2004. The knockout mouse project. Nat. Genet., 36(9):921–924. [doi:10.1038/ng0904-921]PubMedCrossRefGoogle Scholar
  6. Braselmann, S., Graninger, P., Busslinger, M., 1993. A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. PNAS, 90(5):1657–1661. [doi:10.1073/pnas.90.5.1657]PubMedCrossRefGoogle Scholar
  7. Calos, M.P., 2006. The ΦC31 integrase system for gene therapy. Curr. Gene. Ther., 6(6):633–645. [doi:10.2174/156652306779010642]PubMedCrossRefGoogle Scholar
  8. Casanova, E., Fehsenfeld, S., Lemberger, T., Shimshek, D.R., Sprengel, R., Mantamadiotis, T., 2002. ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis, 34(3):208–214. [doi:10.1002/gene.10153]PubMedCrossRefGoogle Scholar
  9. Check, E., 2002. Draft mouse genome makes public debut. Nature, 417(6885):106. [doi:10.1038/417106a]PubMedCrossRefGoogle Scholar
  10. Chow, L.M.L., Tian, Y., Weber, T., Corbett, M., Zuo, J., Baker, S.J., 2006. Inducible Cre recombinase activity in mouse cerebellar granule cell precursors and inner ear hair cells. Dev. Dyn., 235(11):2991–2998. [doi:10.1002/dvdy.20948]PubMedCrossRefGoogle Scholar
  11. Cohen-Tannoudji, M., Babinet, C., 1998. Beyond ‘knock-out’ mice: new perspectives for the programmed modification of the mammalian genome. Mol. Hum. Reprod., 4(10): 929–938. [doi:10.1093/molehr/4.10.929]PubMedCrossRefGoogle Scholar
  12. Doetschman, T., Gregg, R.G., Maeda, N., Hooper, M.L., Melton, D.W., Thompson, S., Smithies, O., 1987. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148):576–578. [doi:10.1038/330576a0]PubMedCrossRefGoogle Scholar
  13. Dragatsis, I., Zeitlin, S., 2001. A method for the generation of conditional gene repair mutations in mice. Nucleic Acids Res., 29(3):E10. [doi:10.1093/nar/29.3.e10]PubMedCrossRefGoogle Scholar
  14. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., Chambon, P., 1996. Ligand-activated site-specific recombination in mice. PNAS, 93(20):10887–10890. [doi:10.1073/pnas.93.20.10887]PubMedCrossRefGoogle Scholar
  15. Feil, R., Wagner, J., Metzger, D., Chambon, P., 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun., 237(3):752–757. [doi:10.1006/bbrc.1997.7124]PubMedCrossRefGoogle Scholar
  16. Friedel, R.H., Seisenberger, C., Kaloff, C., Wurst, W., 2007. EUCOMM-the European conditional mouse mutagenesis program. Brief Funct. Genomic. Proteomic., 6(3): 180–185. [doi:10.1093/bfgp/elm022]PubMedCrossRefGoogle Scholar
  17. Gao, J., Wu, X., Zuo, J., 2004. Targeting hearing genes in mice. Mol. Brain Res., 132(2):192–207. [doi:10.1016/j.molbrainres.2004.06.035]PubMedCrossRefGoogle Scholar
  18. Gossen, M., Bujard, H., 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS, 89(12):5547–5551. [doi:10.1073/pnas.89.12.5547]PubMedCrossRefGoogle Scholar
  19. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., Bujard, H., 1995. Transcriptional activation by tetracyclines in mammalian cells. Science, 268(5218): 1766–1769. [doi:10.1126/science.7792603]PubMedCrossRefGoogle Scholar
  20. Gossler, A., Joyner, A.L., Rossant, J., Skarnes, W.C., 1989. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science, 244(4903): 463–465. [doi:10.1126/science.2497519]PubMedCrossRefGoogle Scholar
  21. Groth, A.C., Olivares, E.C., Thyagarajan, B., Calos, M.P., 2000. A phage integrase directs efficient site-specific integration in human cells. PNAS, 97(11):5995–6000. [doi:10.1073/pnas.090527097]PubMedCrossRefGoogle Scholar
  22. Guan, C., Ye, C., Yang, X., Gao, J., 2010. A review of current large-scale mouse knockout efforts. Genesis, 48(2):73–85. [doi:10.1002/dvg.20594]PubMedGoogle Scholar
  23. Hoess, R.H., Ziese, M., Sternberg, N., 1982. P1 site-specific recombination: nucleotide sequence of the recombining sites. PNAS, 79(11):3398–3402. [doi:10.1073/pnas.79.11.3398]PubMedCrossRefGoogle Scholar
  24. Hoess, R., Abremski, K., Sternberg, N., 1984. The nature of the interaction of the P1 recombinase Cre with the recombining site loxP. Cold Spring Harb. Symp. Quant. Biol., 49:761–768. [doi:10.1101/SQB.1984.049.01.086]PubMedCrossRefGoogle Scholar
  25. Huang, L.C., Wood, E.A., Cox, M.M., 1991. A bacterial model system for chromosomal targeting. Nucleic Acids Res., 19(3):443–448. [doi:10.1093/nar/19.3.443]PubMedCrossRefGoogle Scholar
  26. Indra, A.K., Warot, X., Brocard, J., Bornert, J.M., Xiao, J.H., Chambon, P., Metzger, D., 1999. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res., 27(22):4324–4327. [doi:10.1093/nar/27.22.4324]PubMedCrossRefGoogle Scholar
  27. Ishida, Y., Leder, P., 1999. RET: a poly A-trap retrovirus vector for reversible disruption and expression monitoring of genes in living cells. Nucleic Acids Res., 27(24): e35–e42. [doi:10.1093/nar/27.24.e35]PubMedCrossRefGoogle Scholar
  28. Kappel, S., Matthess, Y., Zimmer, B., Kaufmann, M., Strebhardt, K., 2006. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res., 34(16):4527–4536. [doi:10.1093/nar/gkl628]PubMedCrossRefGoogle Scholar
  29. Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lübbert, H., Bujard, H., 1996. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. PNAS, 93(20):10933–10938. [doi:10.1073/pnas.93.20.10933]PubMedCrossRefGoogle Scholar
  30. Klysik, J., 2002. Mice and humans: chromosome engineering and its application to functional genomics. Acta Biochim. Pol., 49(3):553–569.PubMedGoogle Scholar
  31. Kothary, R., Clapoff, S., Brown, A., Campbell, R., Peterson, A., Rossant, J., 1988. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature, 335(6189):435–437. [doi:10.1038/335435a0]PubMedCrossRefGoogle Scholar
  32. Lee, S.K., Kumar, P., 2009. Conditional RNAi: towards a silent gene therapy. Adv. Drug Deliv. Rev., 61(7–8):650–664. [doi:10.1016/j.addr.2009.03.016]PubMedCrossRefGoogle Scholar
  33. Lister, J.A., 2010. Transgene excision in zebrafish using the phiC31 integrase. Genesis, 48(2):137–143. [doi:10.1002/dvg.20613]PubMedCrossRefGoogle Scholar
  34. Logie, C., Stewart, A.F., 1995. Ligand-regulated site-specific recombination. PNAS, 92(13):5940–5944. [doi:10.1073/pnas.92.13.5940]PubMedCrossRefGoogle Scholar
  35. Lu, J., Maddison, L.A., Chen, W., 2011. PhiC31 integrase induces efficient site-specific excision in zebrafish. Transgenic Res., 20(1):183–189. [doi:10.1007/s11248-010-9394-5]PubMedCrossRefGoogle Scholar
  36. Ma, Q.W., Sheng, H.Q., Yan, J.B., Cheng, S., Huang, Y., Chen-Tsai, Y., Ren, Z.R., Huang, S.Z., Zeng, Y.T., 2006. Identification of pseudo attP sites for phage ΦC31 integrase in bovine genome. Biochem. Biophys. Res. Commun., 345(3):984–988. [doi:10.1016/j.bbrc.2006.04.145]PubMedCrossRefGoogle Scholar
  37. Marshall, E., 2002. Genome sequencing. Public group completes draft of the mouse. Science, 296(5570):1005. [doi:10.1126/science.296.5570.1005b]Google Scholar
  38. Matsuda, T., Cepko, C.L., 2007. Controlled expression of transgenes introduced by in vivo electroporation. PNAS, 104(3):1027–1032. [doi:10.1073/pnas.0610155104]PubMedCrossRefGoogle Scholar
  39. McLeod, M., Craft, S., Broach, J.R., 1986. Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell Biol., 6(10):3357–3367.PubMedGoogle Scholar
  40. Metzger, D., Clifford, J., Chiba, H., Chambon, P., 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. PNAS, 92(15):6991–6995. [doi:10.1073/pnas.92.15.6991]PubMedCrossRefGoogle Scholar
  41. Montgomery, M.K., Xu, S., Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. PNAS, 95(26):15502–15507. [doi:10.1073/pnas.95.26.15502]PubMedCrossRefGoogle Scholar
  42. Morris, A.C., Schaub, T.L., James, A.A., 1991. FLP-mediated recombination in the vector mosquito, Aedes aegypti. Nucleic Acids Res., 19(21):5895–5900. [doi:10.1093/nar/19.21.5895]PubMedCrossRefGoogle Scholar
  43. Nagy, A., 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis, 26(2):99–109. [doi:10.1002/(SICI)1526-968X(200002)26:2〈99::AID-GENE1〉3.3.CO;2-2]PubMedCrossRefGoogle Scholar
  44. Nagy, A., Mar, L., Watts, G., 2009. Creation and use of a Cre recombinase transgenic database. Methods Mol. Biol., 530:365–378. [doi:10.1007/978-1-59745-471-1_19]PubMedCrossRefGoogle Scholar
  45. No, D., Yao, T.P., Evans, R.M., 1996. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. PNAS, 93(8):3346–3351. [doi:10.1073/pnas.93.8.3346]PubMedCrossRefGoogle Scholar
  46. Orban, P.C., Chui, D., Marth, J.D., 1992. Tissue- and site-specific DNA recombination in transgenic mice. PNAS, 89(15):6861–6865. [doi:10.1073/pnas.89.15.6861]PubMedCrossRefGoogle Scholar
  47. Picard, D., 1994. Regulation of protein function through expression of chimaeric proteins. Curr. Opin. Biotechnol., 5(5):511–515. [doi:10.1016/0958-1669(94)90066-3]PubMedCrossRefGoogle Scholar
  48. Ramirez-Solis, R., Liu, P., Bradley, A., 1995. Chromosome engineering in mice. Nature, 378(6558):720–724. [doi:10.1038/378720a0]PubMedCrossRefGoogle Scholar
  49. Schnütgen, F., 2006. Generation of multipurpose alleles for the functional analysis of the mouse genome. Brief Funct. Genomic. Proteomic., 5(1):15–18. [doi:10.1093/bfgp/ell009]PubMedCrossRefGoogle Scholar
  50. Senecoff, J.F., Rossmeissl, P.J., Cox, M.M., 1988. DNA recognition by the FLP recombinase of the yeast 2 mu plasmid: a mutational analysis of the FLP binding site. J. Mol. Biol., 201(2):405–421. [doi:10.1016/0022-2836(88)90147-7]PubMedCrossRefGoogle Scholar
  51. Shaffer, L.G., Lupski, J.R., 2000. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet., 34:297–329. [doi:10.1146/annurev.genet.34.1.297]PubMedCrossRefGoogle Scholar
  52. Sharma, N., Moldt, B., Dalsgaard, T., Jensen, T.G., Mikkelsen, J.G., 2008. Regulated gene insertion by steroid-induced ΦC31 integrase. Nucleic Acids Res., 36(11):e67. [doi:10.1093/nar/gkn298]PubMedCrossRefGoogle Scholar
  53. Shigeoka, T., Kawaichi, M., Ishida, Y., 2005. Suppression of nonsense-mediated mRNA decay permits unbiased gene trapping in mouse embryonic stem cells. Nucleic Acids Res., 33(2):e20. [doi:10.1093/nar/gni022]PubMedCrossRefGoogle Scholar
  54. Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., et al., 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 474(7351):337–342. [doi:10.1038/nature10163]PubMedCrossRefGoogle Scholar
  55. Smith, M.C., Thorpe, H.M., 2002. Diversity in the serine recombinases. Mol. Microbiol., 44(2):299–307. [doi:10.1046/j.1365-2958.2002.02891.x]PubMedCrossRefGoogle Scholar
  56. Stark, W.M., Boocock, M.R., Sherratt, D.J., 1992. Catalysis by site-specific recombinases. Trends Genet., 8(12):432–439. [doi:10.1016/0168-9525(92)90327-Z]PubMedCrossRefGoogle Scholar
  57. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M., Hoess, R., 1981. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb. Symp. Quant. Biol., 45:297–309. [doi:10.1101/SQB.1981.045.01.042]PubMedCrossRefGoogle Scholar
  58. Thomas, K.R., Capecchi, M.R., 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51(3):503–512. [doi:10.1016/0092-8674(87)90646-5]PubMedCrossRefGoogle Scholar
  59. Thorpe, H.M., Smith, M.C., 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. PNAS, 95(10): 5505–5510. [doi:10.1073/pnas.95.10.5505]PubMedCrossRefGoogle Scholar
  60. Thorpe, H.M., Wilson, S.E., Smith, M.C., 2000. Control of directionality in the site-specific recombination system of the Streptomyces phage ΦC31. Mol. Microbiol., 38(2): 232–241. [doi:10.1046/j.1365-2958.2000.02142.x]PubMedCrossRefGoogle Scholar
  61. Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S., Calos, M.P., 2001. Site-specific genomic integration in mammalian cells mediated by phage ΦC31 integrase. Mol. Cell. Biol., 21(12):3926–3934. [doi:10.1128/MCB.21.12.3926-3934.2001]PubMedCrossRefGoogle Scholar
  62. Tian, Y., James, S., Zuo, J., Fritzsch, B., Beisel, K.W., 2006. Conditional and inducible gene recombineering in the mouse inner ear. Brain Res., 1091(1):243–254. [doi:10.1016/j.brainres.2006.01.040]PubMedCrossRefGoogle Scholar
  63. Uemura, M., Niwa, Y., Kakazu, N., Adachi, N., Kinoshita, K., 2010. Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors. PLoS One, 5(3):e9846. [doi:10.1371/journal.pone.0009846]PubMedCrossRefGoogle Scholar
  64. van Deursen, J., Fornerod, M., van Rees, B., Grosveld, G., 1995. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. PNAS, 92(16): 7376–7380. [doi:10.1073/pnas.92.16.7376]PubMedCrossRefGoogle Scholar
  65. Wang, Y., Tsai, S.Y., O'Malley, B.W., 1999. Antiprogestin regulable gene switch for induction of gene expression in vivo. Methods Enzymol., 306:281–294. [doi:10.1016/S0076-6879(99)06018-8]PubMedCrossRefGoogle Scholar
  66. Watson, J.D., Cook-Deegan, R.M., 1991. Origins of the Human Genome Project. FASEB J., 5(1):8–11.PubMedGoogle Scholar
  67. Yao, T.P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.D., McKeown, M., Cherbas, P., Evans, R.M., 1993. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature, 366(6454):476–479. [doi:10.1038/366476a0]PubMedCrossRefGoogle Scholar
  68. Yu, Y., Bradley, A., 2001. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet., 2(10):780–790. [doi:10.1038/35093564]PubMedCrossRefGoogle Scholar
  69. Zhang, Y., Riesterer, C., Ayrall, A.M., Sablitzky, F., Littlewood, T.D., Reth, M., 1996. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res., 24(4):543–548. [doi:10.1093/nar/24.4.543]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Life ScienceShandong UniversityJinanChina

Personalised recommendations