Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 5, pp 378–385 | Cite as

Effect of intensive multifactorial treatment on the intima-media thickness of large arteries in patients with new-onset type 2 diabetes mellitus

  • Xiao-hong Zhao
  • Zhe-rong Xu
  • Qin Zhang
  • Hai-feng Gu
  • Yun-mei Yang
Article

Abstract

Objective

To quantify the changes in blood glucose, blood lipids, blood pressure, and the intima-media thickness (IMT) of large arteries in patients with new-onset type 2 diabetes mellitus who received either intensive multifactorial treatment or conventional treatment.

Methods

Two-hundred and ten patients with new-onset type 2 diabetes mellitus were randomly assigned to two groups: an intensive treatment group (n=110) and a conventional treatment group (n=100). Fasting blood glucose (FBG), glycosylated hemoglobin A1c (HbA1c), blood pressure, blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein C (LDL-C), and high-density lipoprotein C (HDL-C)], and IMTs of large arteries (carotid, iliac, and femoral arteries) were determined before and at one and two years after starting treatment. The patients in the conventional treatment group received routine diabetes management in our outpatient department. Targets were established for patients in the intensive treatment group. Their blood glucose, blood lipids, and blood pressure levels were regularly monitored and therapeutic regimens were adjusted for those whose measurements did not meet the target values until all the parameters met the established targets. Within-group and between-group differences were evaluated.

Results

A significantly greater percentage of patients in the intensive treatment group had LDL-C levels that reached the target value one year after starting treatment than those in the conventional treatment group (52.04% vs. 33.33%, P<0.05). No significant differences were found between groups for FBG, HbA1c, blood pressure, TG, TC, or HDL-C. The percentages of patients with TG (51.02% vs. 34.48%), TC (52.04% vs. 33.33%), and LDL-C (61.22% vs. 43.67%) who met the respective target values in the intensive treatment group were all significantly higher than the corresponding percentages in the conventional treatment group two years after starting treatment (P<0.05). There were no significant differences in the percentages of patients with FBG, HbA1c, and blood pressure values meeting the respective targets between the groups at the two-year follow-up. One year after starting treatment, the LDL-C level, diastolic blood pressure (DBP), and the IMTs of the femoral and iliac arteries of the intensive treatment group were significantly lower compared to those of the conventional treatment group (P<0.05), although there was no significant difference in other metabolic parameters. Two years after starting treatment, the TC, LDL-C, blood pressure [systolic blood pressure (SBP) and DBP], and the IMTs of the carotid and femoral arteries of the intensive treatment group were significantly lower than those of the conventional treatment group (P<0.05). No significant differences in other metabolic parameters existed between the two groups two years after starting treatment.

Conclusions

Early comprehensive and intensive treatment of type 2 diabetes mellitus can delay or even reverse the increase in IMT of large arteries. Lowering blood pressure and blood lipid regulation in patients with type 2 diabetes mellitus have great significance in decreasing the risk of diabetes-related macrovascular lesions.

Key words

Type 2 diabetes mellitus Intensive treatment Intima-media thickness (IMT) Large arteries 

CLC number

R587.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, A.I., Stratton, I.M., Neil, H.A., Yudkin, J.S., Matthews, D.R., Cull, C.A., Wright, A.D., Turner, R.C., Holman, R.R., 2000. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ, 321(7258):412–419. [doi:10.1136/bmj.321.7258.412]PubMedCrossRefGoogle Scholar
  2. Aronson, D., 2008. Hyperglycemia and the Pathobiology of Diabetic Complications. In: Fisman, E.Z., Tenenbaum, A. (Eds.), Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets. Adv. Cardiol. Basel, Karger, vol.45, p.1–16. [doi:10.1159/000115118]CrossRefGoogle Scholar
  3. Colhoun, H.M., Betteridge, D.J., Durrington, P.N., Hitman, G.A., Neil, H.A., Livingstone, S.J., Thomason, M.J., Mackness, M.I., Charlton-Menys, V., Fuller, J.H., 2004. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet, 364(9435): 685–696. [doi:10.1016/S0140-6736(04)16895-5]PubMedCrossRefGoogle Scholar
  4. Fruchart, J.C., Sacks, F., Hermans, M.P., Assmann, G., Brown, W.V., Ceska, R., Chapman, M.J., Dodson, P.M., Fioretto, P., Ginsberg, H.N., et al., 2008. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am. J. Cardiol., 102(10 Suppl.):1K–34K. [doi:10.1016/j.amjcard.2008.10.002]PubMedCrossRefGoogle Scholar
  5. Gæde, P., Lund-Andersen, H., Parving, H.H., Pedersen, O., 2008. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med., 358(6):580–591. [doi:10.1056/NEJMoa0706245]PubMedCrossRefGoogle Scholar
  6. Grundy, S.M., Benjamin, I.J., Burke, G.L., Chait, A., Eckel, R.H., Howard, B.V., Mitch, W., Smith, S.C.Jr., Sowers, J.R., 1999. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 100(10):1134–1146. [doi:10.1161/01.CIR.100.10.1134]PubMedGoogle Scholar
  7. Grundy, S.M., Cleeman, J.I., Merz, C.N., Brewer, H.B.Jr., Clark, L.T., Hunninghake, D.B., Pasternak, R.C., Smith, S.C.Jr., Stone, N.J., 2004. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Am. Coll. Cardiol., 44(3):720–732. [doi:10.1016/j.jacc.2004.07.001]PubMedCrossRefGoogle Scholar
  8. Holman, R.R., Paul, S.K., Bethel, M.A., Matthews, D.R., Neil, H.A., 2008. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med., 359(15): 1577–1589. [doi:10.1056/NEJMoa0806470]PubMedCrossRefGoogle Scholar
  9. Kanter, J.E., Johansson, F., LeBoeuf, R.C., Bornfeldt, K.E., 2007. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circul. Res., 100(6):769–781. [doi:10.1161/01.RES.0000259589.34348.74]CrossRefGoogle Scholar
  10. Lorenz, M.W., von Kegler, S., Steinmetz, H., Markus, H.S., Sitzer, M., 2006. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke, 37(1):87–92. [doi:10.1161/01.STR.0000196964.24024.ea]PubMedCrossRefGoogle Scholar
  11. Lorenz, M.W., Markus, H.S., Bots, M.L., Rosvall, M., Sitzer, M., 2007. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation, 115(4):459–467. [doi:10.1161/CIRCULATIONAHA.106.628875]PubMedCrossRefGoogle Scholar
  12. Niiranen, T., Jula, A., Kantola, I., Moilanen, L., Kahonen, M., Kesaniemi, Y.A., Nieminen, M.S., Reunanen, A., 2007. Home-measured blood pressure is more strongly associated with atherosclerosis than clinic blood pressure: the Finn-HOME Study. J. Hypert., 25(6):1225–1231. [doi:10.1097/HJH.0b013e3280d94336]CrossRefGoogle Scholar
  13. Nissen, S.E., Tuzcu, E.M., Schoenhagen, P., Brown, B.G., Ganz, P., Vogel, R.A., Crowe, T., Howard, G., Cooper, C.J., Brodie, B., et al., 2004. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA, 291(9):1071–1080. [doi:10.1001/jama.291.9.1071]PubMedCrossRefGoogle Scholar
  14. Orasanu, G., Plutzky, J., 2009. The pathologic continuum of diabetic vascular disease. J. Am. Coll. Cardiol., 53(5 Suppl.):S35–S42. [doi:10.1016/j.jacc.2008.09.055]PubMedCrossRefGoogle Scholar
  15. Ray, K.K., Seshasai, S.R., Wijesuriya, S., Sivakumaran, R., Nethercott, S., Preiss, D., Erqou, S., Sattar, N., 2009. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet, 373(9677):1765–1772. [doi:10.1016/S0140-6736(09)60697-8]PubMedCrossRefGoogle Scholar
  16. Saydah, S.H., Fradkin, J., Cowie, C.C., 2004. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA, 291(3):335–342. [doi:10.1001/jama.291.3.335]PubMedCrossRefGoogle Scholar
  17. Skyler, J.S., Bergenstal, R., Bonow, R.O., Buse, J., Deedwania, P., Gale, E.A.M., Howard, B.V., Kirkman, M.S., Kosiborod, M., Reaven, P., et al., 2009. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials. J. Am. Coll. Cardiol., 53(3):298–304. [doi:10.1016/j.jacc.2008.10.008]PubMedCrossRefGoogle Scholar
  18. Sowers, J.R., Bakris, G.L., 2000. Antihypertensive therapy and the risk of type 2 diabetes mellitus. N. Engl. J. Med., 342(13):969–970. [doi:10.1056/NEJM200003303421310]PubMedCrossRefGoogle Scholar
  19. Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Turner, R.C., Holman, R.R., 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321(7258): 405–412. [doi:10.1136/bmj.321.7258.405]PubMedCrossRefGoogle Scholar
  20. Turner, R.C., Holman, R.R., Cull, C.A., Stratton, I.M., Matthews, D.R., Frighi, V., Manley, S.E., Neil, A., McElroy, K., Wright, D., et al., 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 352(9131):837–853. [doi:10.1016/S0140-6736(98)07019-6]CrossRefGoogle Scholar
  21. Zanchetti, A., Crepaldi, G., Bond, M.G., Gallus, G.V., Veglia, F., Ventura, A., Mancia, G., Baggio, G., Sampieri, L., Rubba, P., et al., 2001. Systolic and pulse blood pressures (but not diastolic blood pressure and serum cholesterol) are associated with alterations in carotid intima-media thickness in the moderately hypercholesterolaemic hypertensive patients of the Plaque Hypertension Lipid Lowering Italian Study. J. Hypert., 19(1):79–88. [doi:10.1097/00004872-200101000-00011]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao-hong Zhao
    • 1
  • Zhe-rong Xu
    • 1
  • Qin Zhang
    • 1
  • Hai-feng Gu
    • 1
  • Yun-mei Yang
    • 1
  1. 1.Department of Geriatrics, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations