Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 4, pp 261–266 | Cite as

Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.)

  • Prapassorn Bussaman
  • Chirayu Sa-Uth
  • Paweena Rattanasena
  • Angsumarn Chandrapatya
Article

Abstract

Xenorhabdus bacterium has been used as a biological control agent against Luciaphorus sp., a mushroom mite endemic in Thailand. To develop an effective formulation of Xenorhabdus stokiae, treatments using different parts of X. stokiae isolate PB09 culture, including whole cell suspension, cell-free supernatant, and crude cell extract, were performed. The results show that different parts of X. stokiae isolate PB09 culture could induce variable effects on mite mortality and fecundity. Application with cell-free supernatant of X. stokiae culture resulted in both the highest mite mortality rate [(89.00±3.60)%] and the lowest mite fecundity [(41.33±23.69) eggs/gravid female]. Whole cell suspension of X. stokiae isolate PB09 culture was found to be slightly less effective than its cell-free supernatant, suggesting that X. stokiae was more likely to release its metabolites with acaricidal activities to the surrounding culture media. Crude cell extract of X. stokiae was not effective against mites. Cell-free supernatant of X. stokiae isolate PB09 was the most effective biological control agent and it could be conveniently used in future formulations instead of live bacteria.

Key words

Xenorhabdus Luciaphorus Whole cell suspension Cell-free supernatant Crude cell extract Mushroom mite 

CLC number

Q939.9 Q969.91 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjørnson, S., Keddie, B.A., 2001. Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae). J. Invertebr. Pathol., 77(2):114–119. [doi:10.1006/jipa.2001.5008]PubMedCrossRefGoogle Scholar
  2. Bode, H.B., 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol., 13(2): 224–230. [doi:10.1016/j.cbpa.2009.02.037]PubMedCrossRefGoogle Scholar
  3. Bowen, D., Blackburn, M., Rocheleau, T., Grutzmacher, C., Ffrench-Constant, R.H., 2000. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes. Insect Biochem. Mol. Biol., 30(1):69–74. [doi:10.1016/S0965-1748(99)00098-3]PubMedCrossRefGoogle Scholar
  4. Brivio, M.F., Mastore, M., Nappi, A.J., 2010. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev. Comp. Immunol., 34(9):991–998. [doi:10.1016/j.dci.2010.05.002]PubMedCrossRefGoogle Scholar
  5. Bro-Rasmussen, F., 1996. Contamination by persistent chemicals in food chain and human health. Sci. Total Environ., 188:S45–S60. [doi:10.1016/0048-9697(96)05 276-X]PubMedCrossRefGoogle Scholar
  6. Bussaman, P., Chandrapatya, A., Sermswan, R.W., Grewal, P.S., 2004. Morphology, Biology and Behavior of the Genus Pygmephorus (Acari: Heterostigmata), a New Parasite of Economic Edible Mushroom. Proceeding of XXII International Congress of Entomology. Carillon Conference Management Pty Ltd., 15–21 August, Brisbane, Australia.Google Scholar
  7. Bussaman, P., Sermswan, R.W., Grewal, P.S., 2006. Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari: Pygmephoridae). Biocontrol Sci. Technol., 16(3): 245–256. [doi:10.1080/09583150500335822]CrossRefGoogle Scholar
  8. Bussaman, P., Sobanboa, S., Grewal, P.S., Chandrapatya, A., 2009. Pathogenicity of additional strains of Photorhabdus and Xenorhabdus (Enterobacteriaceae) to the mushroom mite Luciaphorus perniciosus (Acari: Pygmephoridae). Appl. Entomol. Zool., 44(2):293–299. [doi:10.1303/aez.2009.293]CrossRefGoogle Scholar
  9. Caldas, C., Pereira, A., Cherqui, A., Simoes, N., 2002. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl. Environ. Microb., 68(3):1297–1304. [doi:10.1128/AEM.68.3.1297-1304.2002]CrossRefGoogle Scholar
  10. Campos-Herrera, R., Tailliez, P., Pages, S., Ginibre, N., Gutierrez, C., Boemare, N.E., 2009. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol., 102(2):173–181. [doi:10.1016/j.jip.2009.08.007]PubMedCrossRefGoogle Scholar
  11. Cho, S., Kim, Y.H., 2004. Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia-Pacific Entomol., 7(2):195–200. [doi:10.1016/S1226-8615(08)60215-0]CrossRefGoogle Scholar
  12. Chongchitmate, P., Somsook, V., Hormchan, P., Visarathanonth, N., 2005. Bionomics of entomopathogenic nematode Steinernema siamkayai Stock, Somsook and Reid (n. sp.) and its efficacy against Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Kasetsart J. (Nat. Sci.), 39(3): 431–439.Google Scholar
  13. Gaugler, R., 2002. Entomopathogenic Nematology. CABI Publishing, CAB International, Wallingford, Oxfordshire, UK. [doi:10.1079/9780851995670.0000]CrossRefGoogle Scholar
  14. Grewal, P.S., Ehlers, R.U., Shapiro-Ilan, D.I., 2005. Nematodes as Biocontrol Agents. CABI Publishing, CAB International, Wallingford, Oxfordshire, UK. [doi:10.1079/9780851990170.0000]CrossRefGoogle Scholar
  15. Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett., 239(2):241–248. [doi:10.1016/j.femsle.2004.08.041]PubMedCrossRefGoogle Scholar
  16. Kaya, H.K., Stock, S.P., 1997. Techniques in Insect Nematology. In: Lacey, L.A. (Ed.), Manual of Techniques in Insect Pathology. Academic Press, London, UK, p.281–324.Google Scholar
  17. Klement, Z., Rudolph, K., Sands, D.C. (Eds.), 1990. Method in Phytobacteriology. Academiai Kiado, Budapest, Hungary, p.99–100.Google Scholar
  18. Lacey, L.A., 1997. Manual of Techniques in Insect Pathology: Biological Techniques Series. Academic Press, San Diego, California, USA, p.315–322.Google Scholar
  19. Mahar, A.N., Munir, M., Mahar, A.Q., 2004. Studies of different application methods of Xenorhabdus and Photorhabdus cells and their toxin in broth solution to control locust (Schistocerca gregaria). Asian J. Plant Sci., 3(6):690–695. [doi:10.3923/ajps.2004.690.695]CrossRefGoogle Scholar
  20. Mahar, A.N., Munir, M., Elawad, S., Gowen, S.R., Hague, N.G.M., 2005. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. J. Zhejiang Univ.-Sci. B, 6(6): 457–463. [doi:10.1631/jzus.2005.B0457]PubMedGoogle Scholar
  21. Mahar, A.N., Jan, N.D., Mahar, G.M., Mahar, A.Q., 2008. Control of insects with entomopathogenic bacterium Xenorhabdus nematophila and its toxic secretions. Int. J. Agric. Biol., 10(1):52–56.Google Scholar
  22. Mohamed, M.A., 2007. Purification and characterization of an alkaline protease produced by the bacterium Xenorhabdus nematophila BA2, a symbiont of entomopathogenic nematode Steinernema carpocapsae. Res. J. Agric. Biol. Sci., 3(5):510–521.Google Scholar
  23. Morgan, J.A., Sergeant, M., Ellis, D., Ousley, M., Jarrett, P., 2001. Sequence analysis of insecticidal gene from Xenorhabdus nematophila PME1296. Appl. Environ. Microbiol., 67(5):2062–2069. [doi:10.1128/AEM.67.5. 2062-2069.2001]PubMedCrossRefGoogle Scholar
  24. Sharma, S., Waterfield, N., Bowen, D., Rocheleau, T., Holland, L., James R., Ffrench-Constant, R., 2002. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol. Lett., 214(2):241–249. [doi:10.1111/j.1574-6968.2002. tb11354.x]PubMedCrossRefGoogle Scholar
  25. Shrestha, S., Kim, Y., 2010. Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. J. Asian-Pacific Entomol., 13(3):209–213. [doi:10.1016/j.aspen.2010.04.002]CrossRefGoogle Scholar
  26. Stock, S.P., Somsook, V., Reid, A.P., 1998. Steinernema siamkayai n. sp. (Rhabditida: Steinernematidae), an entomopathogenic nematode from Thailand. Syst. Parasitol., 41(2):105–113. [doi:10.1023/A:1006087017195]CrossRefGoogle Scholar
  27. Vala, F., Egas, M., Sabelis, M.W., 2004. Wolbachia affects oviposition and mating behavior of its spider mite host. J. Evol. Biol., 17(3):692–700. [doi:10.1046/j.1420-9101.2003.00679.x]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Prapassorn Bussaman
    • 1
  • Chirayu Sa-Uth
    • 1
  • Paweena Rattanasena
    • 1
  • Angsumarn Chandrapatya
    • 2
  1. 1.Biocontrol Research Unit, Department of BiotechnologyMahasarakham UniversityMaha SarakhamThailand
  2. 2.Department of EntomologyKasetsart UniversityChatuchak, BangkokThailand

Personalised recommendations