Skip to main content
Log in

Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.)

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Xenorhabdus bacterium has been used as a biological control agent against Luciaphorus sp., a mushroom mite endemic in Thailand. To develop an effective formulation of Xenorhabdus stokiae, treatments using different parts of X. stokiae isolate PB09 culture, including whole cell suspension, cell-free supernatant, and crude cell extract, were performed. The results show that different parts of X. stokiae isolate PB09 culture could induce variable effects on mite mortality and fecundity. Application with cell-free supernatant of X. stokiae culture resulted in both the highest mite mortality rate [(89.00±3.60)%] and the lowest mite fecundity [(41.33±23.69) eggs/gravid female]. Whole cell suspension of X. stokiae isolate PB09 culture was found to be slightly less effective than its cell-free supernatant, suggesting that X. stokiae was more likely to release its metabolites with acaricidal activities to the surrounding culture media. Crude cell extract of X. stokiae was not effective against mites. Cell-free supernatant of X. stokiae isolate PB09 was the most effective biological control agent and it could be conveniently used in future formulations instead of live bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bjørnson, S., Keddie, B.A., 2001. Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae). J. Invertebr. Pathol., 77(2):114–119. [doi:10.1006/jipa.2001.5008]

    Article  PubMed  Google Scholar 

  • Bode, H.B., 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol., 13(2): 224–230. [doi:10.1016/j.cbpa.2009.02.037]

    Article  PubMed  CAS  Google Scholar 

  • Bowen, D., Blackburn, M., Rocheleau, T., Grutzmacher, C., Ffrench-Constant, R.H., 2000. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes. Insect Biochem. Mol. Biol., 30(1):69–74. [doi:10.1016/S0965-1748(99)00098-3]

    Article  PubMed  CAS  Google Scholar 

  • Brivio, M.F., Mastore, M., Nappi, A.J., 2010. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev. Comp. Immunol., 34(9):991–998. [doi:10.1016/j.dci.2010.05.002]

    Article  PubMed  CAS  Google Scholar 

  • Bro-Rasmussen, F., 1996. Contamination by persistent chemicals in food chain and human health. Sci. Total Environ., 188:S45–S60. [doi:10.1016/0048-9697(96)05 276-X]

    Article  PubMed  CAS  Google Scholar 

  • Bussaman, P., Chandrapatya, A., Sermswan, R.W., Grewal, P.S., 2004. Morphology, Biology and Behavior of the Genus Pygmephorus (Acari: Heterostigmata), a New Parasite of Economic Edible Mushroom. Proceeding of XXII International Congress of Entomology. Carillon Conference Management Pty Ltd., 15–21 August, Brisbane, Australia.

  • Bussaman, P., Sermswan, R.W., Grewal, P.S., 2006. Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari: Pygmephoridae). Biocontrol Sci. Technol., 16(3): 245–256. [doi:10.1080/09583150500335822]

    Article  Google Scholar 

  • Bussaman, P., Sobanboa, S., Grewal, P.S., Chandrapatya, A., 2009. Pathogenicity of additional strains of Photorhabdus and Xenorhabdus (Enterobacteriaceae) to the mushroom mite Luciaphorus perniciosus (Acari: Pygmephoridae). Appl. Entomol. Zool., 44(2):293–299. [doi:10.1303/aez.2009.293]

    Article  Google Scholar 

  • Caldas, C., Pereira, A., Cherqui, A., Simoes, N., 2002. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl. Environ. Microb., 68(3):1297–1304. [doi:10.1128/AEM.68.3.1297-1304.2002]

    Article  CAS  Google Scholar 

  • Campos-Herrera, R., Tailliez, P., Pages, S., Ginibre, N., Gutierrez, C., Boemare, N.E., 2009. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol., 102(2):173–181. [doi:10.1016/j.jip.2009.08.007]

    Article  PubMed  CAS  Google Scholar 

  • Cho, S., Kim, Y.H., 2004. Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia-Pacific Entomol., 7(2):195–200. [doi:10.1016/S1226-8615(08)60215-0]

    Article  Google Scholar 

  • Chongchitmate, P., Somsook, V., Hormchan, P., Visarathanonth, N., 2005. Bionomics of entomopathogenic nematode Steinernema siamkayai Stock, Somsook and Reid (n. sp.) and its efficacy against Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Kasetsart J. (Nat. Sci.), 39(3): 431–439.

    Google Scholar 

  • Gaugler, R., 2002. Entomopathogenic Nematology. CABI Publishing, CAB International, Wallingford, Oxfordshire, UK. [doi:10.1079/9780851995670.0000]

    Book  Google Scholar 

  • Grewal, P.S., Ehlers, R.U., Shapiro-Ilan, D.I., 2005. Nematodes as Biocontrol Agents. CABI Publishing, CAB International, Wallingford, Oxfordshire, UK. [doi:10.1079/9780851990170.0000]

    Book  Google Scholar 

  • Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett., 239(2):241–248. [doi:10.1016/j.femsle.2004.08.041]

    Article  PubMed  CAS  Google Scholar 

  • Kaya, H.K., Stock, S.P., 1997. Techniques in Insect Nematology. In: Lacey, L.A. (Ed.), Manual of Techniques in Insect Pathology. Academic Press, London, UK, p.281–324.

    Google Scholar 

  • Klement, Z., Rudolph, K., Sands, D.C. (Eds.), 1990. Method in Phytobacteriology. Academiai Kiado, Budapest, Hungary, p.99–100.

    Google Scholar 

  • Lacey, L.A., 1997. Manual of Techniques in Insect Pathology: Biological Techniques Series. Academic Press, San Diego, California, USA, p.315–322.

    Google Scholar 

  • Mahar, A.N., Munir, M., Mahar, A.Q., 2004. Studies of different application methods of Xenorhabdus and Photorhabdus cells and their toxin in broth solution to control locust (Schistocerca gregaria). Asian J. Plant Sci., 3(6):690–695. [doi:10.3923/ajps.2004.690.695]

    Article  Google Scholar 

  • Mahar, A.N., Munir, M., Elawad, S., Gowen, S.R., Hague, N.G.M., 2005. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. J. Zhejiang Univ.-Sci. B, 6(6): 457–463. [doi:10.1631/jzus.2005.B0457]

    PubMed  Google Scholar 

  • Mahar, A.N., Jan, N.D., Mahar, G.M., Mahar, A.Q., 2008. Control of insects with entomopathogenic bacterium Xenorhabdus nematophila and its toxic secretions. Int. J. Agric. Biol., 10(1):52–56.

    Google Scholar 

  • Mohamed, M.A., 2007. Purification and characterization of an alkaline protease produced by the bacterium Xenorhabdus nematophila BA2, a symbiont of entomopathogenic nematode Steinernema carpocapsae. Res. J. Agric. Biol. Sci., 3(5):510–521.

    CAS  Google Scholar 

  • Morgan, J.A., Sergeant, M., Ellis, D., Ousley, M., Jarrett, P., 2001. Sequence analysis of insecticidal gene from Xenorhabdus nematophila PME1296. Appl. Environ. Microbiol., 67(5):2062–2069. [doi:10.1128/AEM.67.5. 2062-2069.2001]

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S., Waterfield, N., Bowen, D., Rocheleau, T., Holland, L., James R., Ffrench-Constant, R., 2002. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol. Lett., 214(2):241–249. [doi:10.1111/j.1574-6968.2002. tb11354.x]

    Article  PubMed  CAS  Google Scholar 

  • Shrestha, S., Kim, Y., 2010. Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. J. Asian-Pacific Entomol., 13(3):209–213. [doi:10.1016/j.aspen.2010.04.002]

    Article  Google Scholar 

  • Stock, S.P., Somsook, V., Reid, A.P., 1998. Steinernema siamkayai n. sp. (Rhabditida: Steinernematidae), an entomopathogenic nematode from Thailand. Syst. Parasitol., 41(2):105–113. [doi:10.1023/A:1006087017195]

    Article  Google Scholar 

  • Vala, F., Egas, M., Sabelis, M.W., 2004. Wolbachia affects oviposition and mating behavior of its spider mite host. J. Evol. Biol., 17(3):692–700. [doi:10.1046/j.1420-9101.2003.00679.x]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angsumarn Chandrapatya.

Additional information

Project (No. RTA 4880006) supported by the Thailand Research Fund, Kasetsart University and Mahasarakham University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussaman, P., Sa-Uth, C., Rattanasena, P. et al. Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). J. Zhejiang Univ. Sci. B 13, 261–266 (2012). https://doi.org/10.1631/jzus.B1100155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100155

Key words

CLC number

Navigation