Ototoxic destruction by co-administration of kanamycin and ethacrynic acid in rats

  • Hong Liu
  • Da-lian Ding
  • Hai-yan Jiang
  • Xue-wen Wu
  • Richard Salvi
  • Hong Sun


It is well known that ethacrynic acid (EA) can potentiate the ototoxicity of aminoglycoside antibiotics (AmAn) such as kanamycin (KM), if they were applied at the same time. Currently, to create the model of EA-KM-induced cochlear lesion in rats, adult rats received a single injection of EA (75 mg/kg, intravenous injection), or followed immediately by KM (500 mg/kg, intramuscular injection). The hearing function was assessed by auditory brainstem response (ABR) measurement in response to click and/or tone bursts at 4, 8, 12, 16, 20, 24, and 32 kHz. The static microcirculation status in the stria vascularis after a single EA injection was evaluated with eosin staining. The pathological changes in cochlear and vestibular hair cells were also quantified after co-administration of EA and KM. After a single EA injection, blood flow in vessels supplying the stria vascularis rapidly diminished. However, the blood supply to the cochlear lateral wall partially recovered 5 h after EA treatment. Threshold changes in ABR were basically parallel to the microcirculation changes in stria vascularis after single EA treatment. Importantly, disposable co-administration of EA and KM resulted in a permanent hearing loss and severe damage to the cochlear hair cells, but spared the vestibular hair cells. Since the cochlear lateral wall is the important part of the blood-cochlea barrier, EA-induced anoxic damage to the epithelium of stria vascularis may enhance the entry of KM to the cochlea. Thus, experimental animal model of selective cochlear damage with normal vestibular systems can be reliably created through co-administration of EA and KM.

Key words

Ototoxicity Ethacrynic acid Kanamycin Rat Blood-cochlea barrier 

CLC number



  1. Abbruzzese, J.L., Amato, R., Schmidt, S., Raber, M.N., Frost, P., 1990. Phase I clinical trial of cisplatin given i.v. with 5-fluorouracil and high-dose folinic acid. Cancer Chemother. Pharmacol., 26(3):159–162. [doi:10.1007/BF02897192]PubMedCrossRefGoogle Scholar
  2. Ajodhia, J.M., Dix, M.R., 1976. Drug-induced deafness and its treatment. Practitioner, 216(1295):561–570.PubMedGoogle Scholar
  3. Akisada, T., 1987. Evaluation of cochlear damage in kanamycin administered hamster and protective effect of cepharanthine against KM induced ototoxicity. An experimental study. Nippon Jibiinkoka Gakkai Kaiho, 90(8):1229–1244. [doi:10.3950/jibiinkoka.90.1229]PubMedCrossRefGoogle Scholar
  4. Akiyoshi, M., 1978. Evaluation of ototoxicity of tobramycin in guinea pigs. J. Antimicrob. Chemother., 4(Suppl. A): 69–72.PubMedGoogle Scholar
  5. Akiyoshi, M., Sato, K., Nakada, H., Tajima, T., 1974. Audiometric and histopathologic evaluation of ototoxicity of 3′,4′-dideoxykanamycin B, a new aminoglycoside antibiotic (author’s transl.). Jpn. J. Antibiot., 27(1):15–26 (in Japanese).PubMedGoogle Scholar
  6. Akiyoshi, M., Sato, K., Nakada, H., Tajima, T., Suzuki, K., 1975. Evaluation of ototoxicity of amikacin (BB-K8) by animal test (author’s transl.). Jpn. J. Antibiot., 28(3):288–304 (in Japanese).PubMedGoogle Scholar
  7. Aran, J.M., 1982. Evaluation of the ototoxicity of aminoglycosides. Comparative study of dibekacin, gentamicin and tobramycin. Nouv. Presse. Med., 11(46):3426–3431.PubMedGoogle Scholar
  8. Aran, J.M., Erre, J.P., Lima da Costa, D., Debbarh, I., Dulon, D., 1999. Acute and chronic effects of aminoglycosides on cochlear hair cells. Ann. N. Y. Acad. Sci., 884:60–68. [doi:10.1111/j.1749-6632.1999.tb08636.x]PubMedCrossRefGoogle Scholar
  9. Au, S., Weiner, N., Schacht, J., 1986. Membrane perturbation by aminoglycosides as a simple screen of their toxicity. Antimicrob. Agents Chemother., 30(3):395–397.PubMedGoogle Scholar
  10. Bailey, R.R., Peddie, B., 1976. Tobramycin in the treatment of severe and complicated urinary tract infections. N. Z. Med. J., 84(567):1–3.PubMedGoogle Scholar
  11. Becvarovski, Z., Bojrab, D.I., Michaelides, E.M., Kartush, J.K., Zappia, J.J., LaRouere, M.J., 2002. Round window gentamicin absorption: an in vivo human model. Laryngoscope, 112(9):1610–1613. [doi:10.1097/00005537-200209000-00015]PubMedCrossRefGoogle Scholar
  12. Chen, G.D., Kermany, M.H., D’Elia, A., Ralli, M., Tanaka, C., Bielefeld, E.C., Ding, D., Henderson, D., Salvi, R., 2010. Too much of a good thing: long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear. Res., 2265 (1–2):63–69. [doi:10.1016/j.heares.2010.02.010]PubMedCrossRefGoogle Scholar
  13. de Jager, P., van Altena, R., 2002. Hearing loss and nephrotoxicity in long-term aminoglycoside treatment in patients with tuberculosis. Int. J. Tuberc. Lung Dis., 6(7):622–627.PubMedGoogle Scholar
  14. Ding, D., Zhang, Z., 1995. Acoustical transmission blockage caused by urethane and streptomycin. J. Audiol. Speech Disord., 3(1):36–38 (in Chinese).Google Scholar
  15. Ding, D., Salvi, R., 2005. Review of cellular changes in the cochlea due to aminoglycoside antibiotics. Volta Rev., 105(3):407–438.Google Scholar
  16. Ding, D., Luo, D., Huangfu, M., 1990a. The kanamycin toxic relation between the ear and kidney. J. Clin. Otorhinolaryngol., 4(3):142–144 (in Chinese).Google Scholar
  17. Ding, D., Zhao, J., Luo, D., Huangfu, M., 1990b. The microcirculation static quantitative observation of the stria vascularis. Acta Otolaryngol., 4(2):1–2 (in Chinese).Google Scholar
  18. Ding, D., Luo, D., Guo. Y., Huangfu, M., 1991. Probe into the ototoxic mechanism of aminoglycoside antibiotic. Chin. J. Otorhinolaryngol., 26(3):154–155 (in Chinese).Google Scholar
  19. Ding, D., Chen, X., Jin, X., 1992. Observation of vestibular end organ with a small field vision count technique. Chin. J. Otorhinolaryngol., 27(4):202–203 (in Chinese).Google Scholar
  20. Ding, D., Jin, X., Huangfu, M., 1993. Acoustical transmission blockage caused by streptomycin. J. Audiol. Speech Disord., 1(1):29–31 (in Chinese).Google Scholar
  21. Ding, D., Jin, X., Zhao, J., 1995a. Accumulative sites of kanamycin in cochlea basal membrane cells. Chin. J. Otorhinolaryngol., 30(6):323–325 (in Chinese).Google Scholar
  22. Ding, D., Jin, X., Zhao, J., 1995b. Different binding sites of kanamycin and streptomycin in the organs of Corti. J. Clin. Otorhinolaryngol., 9(6):346–347 (in Chinese).Google Scholar
  23. Ding, D., Jin, X., Zhang, Z., Zhu, Q., 1995c. Different susceptibility in gentamycin ototoxicity between red and black eye guinea pigs. Acta Otorhinolaryngol., 9(2):70–74 (in Chinese).Google Scholar
  24. Ding, D., Zhang, Z., Zhu, Q., 1995d. Experimental study of concurrent ototoxicity between ethacrynic acid and gentamycin. J. Audiol. Speech Disord., 3(2):76–79 (in Chinese).Google Scholar
  25. Ding, D., Jin, X., Zhao, J., 1996. The changes of cochlear bioelectric potential on guinea pigs deafened with ethacrynic acid. J. Clin. Otorhinolaryngol., 10(6):330–332 (in Chinese).Google Scholar
  26. Ding, D., Jin, X., Zhao, J., 1997. Accumulative sites of kanamycin in the organ of Corti by microautoradiography. Chin. J. Otorhinolaryngol., 32(6):348–349 (in Chinese).Google Scholar
  27. Ding, D., McFadden, S.L., Woo, J.M., Salvi, R., 2002. Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear. Res., 173(1-2):1–9. [doi:10.1016/S0378-5955(02)00585-3]PubMedCrossRefGoogle Scholar
  28. Ding, D., McFadden, S.L., Browne, R.W., Salvi, R., 2003. Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells. Hear. Res., 185(1–2):90–96. [doi:10.1016/S0378-5955(03)00258-2]PubMedCrossRefGoogle Scholar
  29. Ding, D., Jiang, H., McFadden, S.L., Salvi, R., 2004. Ethacrynic acid is the key for opening of the blood-labyrinth barrier. Chin. J. Otol., 1(2):42–47 (in Chinese).Google Scholar
  30. Ding, D., Jiang, H., Wang, P., Salvi, R., 2007. Cell death after co-administration of cisplatin and ethacrynic acid. Hear. Res., 226(1–2):129–139. [doi:10.1016/j.heares.2006.07.015]PubMedCrossRefGoogle Scholar
  31. Ding, D., Qi, W., Zhang, M., Wang, P., Jiang, H., Salvi, R., 2008. Cisplatin and its ototoxicity. Chin. J. Otol., 6(2): 125–133 (in Chinese).Google Scholar
  32. Ding, D., Jiang, H., Salvi, R., 2010. Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid. Hear. Res., 259(1–2): 16–23. [doi:10.1016/j.heares.2009.08.008]PubMedCrossRefGoogle Scholar
  33. Graham, A.C., Mercier, R.C., Achusim, L.E., Pai, M.P., 2004. Extended-interval aminoglycoside dosing for treatment of enterococcal and staphylococcal osteomyelitis. Ann. Pharmacother., 38(6):936–941. [doi:10.1345/aph.1D514]PubMedCrossRefGoogle Scholar
  34. Greenwood, D.D., 1990. A cochlear frequency-position function for several species-29 years later. J. Acoust. Soc. Am., 87(6):2592–2605. [doi:10.1121/1.399052]PubMedCrossRefGoogle Scholar
  35. Guan, M.X., Fischel-Ghodsian, N., Attardi, G., 2000. A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum. Mol. Genet., 9(12):1787–1793. [doi:10.1093/hmg/9.12.1787]PubMedCrossRefGoogle Scholar
  36. Gutell, R.R., Larsen, N., Woese, C.R., 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev., 58(1):10–26.PubMedGoogle Scholar
  37. Hangfu, M., Zhao, J., Ding, D., 1992. The prophylactic effect of thyroxin on kanamycin ototoxicity in guinea pigs. Hear. Res., 61(1-2):132–136. [doi:10.1016/0378-5955(92)90043-M]PubMedCrossRefGoogle Scholar
  38. Humes, H.D., 1999. Insights into ototoxicity. Analogies to nephrotoxicity. Ann. N. Y. Acad. Sci., 884(1):15–18.PubMedGoogle Scholar
  39. Kraus, K.S., Ding, D., Zhou, Y., Salvi, R., 2009. Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: up-regulation of GAP-43 in the ventral cochlear nucleus. Hear. Res., 255(1–2):33–43. [doi:10.1016/j.heares.2009.05.001]PubMedCrossRefGoogle Scholar
  40. Li, M., Ding, D., Zheng, X.Y., Salvi, R., 2004. Vestibular destruction by slow infusion of gentamicin into semicircular canals. Acta Otolaryngol., 124(Suppl. 552):35–41.CrossRefGoogle Scholar
  41. Li, Y., Ding, D., Jiang, H., Fu, Y., Salvi, R., 2011. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurot. Res., in press. [doi:10.1007/s12640-011-9262-y]Google Scholar
  42. McFadden, S.L., Ding, D., Jiang, H., Woo, J.M., Salvi, R., 2002. Chinchilla models of selective cochlear hair cell loss. Hear. Res., 174(1–2):230–238. [doi:10.1016/S0378-5955(02)00697-4]PubMedCrossRefGoogle Scholar
  43. Moazed, D., Noller, H.F., 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121):389–394. [doi:10.1038/327389a0]PubMedCrossRefGoogle Scholar
  44. Pittinger, C., Adamson, R., 1972. Antibiotic blockade of neuromuscular function. Annu. Rev. Pharmacol., 12:169–184. [doi:10.1146/]PubMedCrossRefGoogle Scholar
  45. Recht, M.I., Douthwaite, S., Dahlquist, K.D., Puglisi, J.D., 1999. Effect of mutations in the A site of 16S rRNA on aminoglycoside antibiotic-ribosome interaction. J. Mol. Biol., 286(1):33–43. [doi:10.1006/jmbi.1998.2446]PubMedCrossRefGoogle Scholar
  46. Rougier, F., Claude, D., Maurin, D., Sedoglavic, A., Ducher, M., Corvaisier, S., Jelliffe, R., Maire, P., 2003. Aminoglycoside nephrotoxicity: modeling, simulation, and control. Antimicrob. Agents Chemother., 47(3):1010–1016. [doi:10.1128/AAC.47.3.1010-1016.2003]PubMedCrossRefGoogle Scholar
  47. Rougier, F., Claude, D., Maurin, M., Maire, P., 2004. Aminoglycoside nephrotoxicity. Curr. Drug Targets Infect. Disord., 4(2):153–162. [doi:10.2174/1568005043340858]PubMedCrossRefGoogle Scholar
  48. Shuman, R.D., Smith, C.R., 1978. Intrathecal gentamicin for refractory gram-positive meningitis. JAMA, 240(5):469–471. [doi:10.1001/jama.240.5.469]PubMedCrossRefGoogle Scholar
  49. Swan, E.E., Mescher, M.J., Sewell, W.F., Tao, S.L., Borenstein, J.T., 2008. Inner ear drug delivery for auditory applications. Adv. Drug Deliv. Rev., 60(15):1583–1599. [doi:10.1016/j.addr.2008.08.001]PubMedCrossRefGoogle Scholar
  50. Torihara, K., Suganuma, T., Ide, S., Morimitsu, T., 1994. Anionic sites in blood capillaries of the mouse cochlear duct. Hear. Res., 77(1-2):69–74. [doi:10.1016/0378-5955(94)90253-4]PubMedCrossRefGoogle Scholar
  51. Vellai, T., Takacs, K., Vida, G., 1998. A new aspect to the origin and evolution of eukaryotes. J. Mol. Evol., 46(5): 499–507. [doi:10.1007/PL00006331]PubMedCrossRefGoogle Scholar
  52. Versnel, H., Agterberg, M.J., de Groot, J.C., Smoorenburg, G.F., Klis, S.F., 2007. Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hear. Res., 231(1–2): 1–12. [doi:10.1016/j.heares.2007.03.003]PubMedCrossRefGoogle Scholar
  53. Wilhelm, J.M., Pettitt, S.E., Pettitt, S.E., 1978. Aminoglycoside antibiotics and eukaryotic protein synthesis: structure-function relationships in the stimulation of misreading with a wheat embryo system. Biochemistry, 17(7):1143–1149. [doi:10.1021/bi00600a001]PubMedCrossRefGoogle Scholar
  54. Wu, W.J., Sha, S.H., McLaren, J.D., Kawamoto, K., Raphael, Y., Schacht, J., 2001. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear. Res., 158(1–2):165–178. [doi:10.1016/S0378-5955(01)00303-3]PubMedCrossRefGoogle Scholar
  55. Xu, S.A., Shepherd, R.K., Chen, Y., Clark, G.M., 1993. Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear. Res., 70(2):205–215. [doi:10.1016/0378-5955(93)90159-X]PubMedCrossRefGoogle Scholar
  56. Yamasoba, T., Kondo, K., Miyajima, C., Suzuki, M., 2003. Changes in cell proliferation in rat and guinea pig cochlea after aminoglycoside-induced damage. Neurosci. Lett., 347(3):171–174. [doi:10.1016/S0304-3940(03)00675-X]PubMedCrossRefGoogle Scholar
  57. Zhao, J., Ding, D., Huangfu, M., 1988a. The influence of enthacrynic acid on the activity of enzyme in the stria vascularis in guinea pigs. J. Clin. Otorhinolaryngol., 2(3):65–67 (in Chinese).Google Scholar
  58. Zhao, J., Ding, D., Wang, J., Huangfu, M., 1988b. Influence of ethacrynic acid on microcirculation of stria vascularis of cochlea in guinea pigs. Acta Univ. Med. Second. Shanghai, 8(2):34–37 (in Chinese).Google Scholar
  59. Zhou, Y., Ding, D., Kraus, K.S., Yu, D., Salvi, R., 2009. Functional and structural changes in the chinchilla cochlea and vestibular system following round window application of carboplatin. Audiol. Med. 7(4):189–199. [doi:10.3109/16513860903335795]PubMedCrossRefGoogle Scholar
  60. Zhu, Q., Liu, G., Ding, D., Jin, X., 1993. Accumulation of gentamycin in perilymph of guinea pigs. Acad. J. Second Mil. Med. Univ., 14(6):568–571 (in Chinese).Google Scholar
  61. Zucca, G., Vega, R., Botta, L., Perez, M.E., Valli, P., Soto, E., 1992. Streptomycin blocks the afferent synapse of the isolated semicircular canals of the frog. Hear. Res., 59(1): 70–74. [doi:10.1016/0378-5955(92)90103-T]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hong Liu
    • 1
    • 2
  • Da-lian Ding
    • 1
    • 2
    • 3
  • Hai-yan Jiang
    • 1
  • Xue-wen Wu
    • 1
    • 2
  • Richard Salvi
    • 1
  • Hong Sun
    • 3
  1. 1.Center for Hearing and DeafnessUniversity at Buffalo, State University of New YorkNew YorkUSA
  2. 2.Department of Otolaryngologythe Third Xiangya Hospital of Central South UniversityChangshaChina
  3. 3.Department of OtolaryngologyXiangya Hospital of Central South UniversityChangshaChina

Personalised recommendations