Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 2, pp 136–144 | Cite as

Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’

  • Ri-ru Zheng
  • Yun Wu
  • Yi-ping Xia


The present study was to test the hypothesis that the plant growth retardants chlorocholine chloride (CCC) and paclobutrazol (PBZ) could improve the carbohydrate accumulation in lily bulbs by enhancing photosynthetic capacity and changing endogenous hormones. Plants of Lilium Oriental hybrids ‘Sorbonne’ were treated with a foliar spray of CCC or PBZ (both at 300 mg/L) solution, at six weeks after planting (6 WAP). The morphological parameters, endogenous hormone contents (gibberellic acid (GA), abscisic acid (ABA), and indole-3-acetic acid (IAA)), and carbohydrate contents were measured from 6 to 18 WAP, at 2-week intervals. The results showed that CCC increased the biomass of leaves and stems which might produce more photoassimilates available for transportation and utilization. However, PBZ treatment suppressed vegetative growth and favored photoassimilate transportation into bulbs. A slight delay of bud and anthesis formation was observed in both treated plants. CCC and PBZ treatments substantially enhanced the sucrose contents in leaves probably due to the increase of chlorophyll contents. Treatment with CCC or PBZ decreased GA but increased IAA contents in lily bulbs which might stimulate starch accumulation and formation of new scales. Our experiment suggested that CCC or PBZ treatment is an effective method to promote carbohydrate accumulation in lily bulbs.

Key words

Carbohydrate Chlorocholine chloride Gibberellic acid Lilium Oriental hybrids ‘Sorbonne’ Paclobutrazol 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul Jaleel, C., Kishorekumar, A., Manivannan, P., Sankar, B., Gomathinayagam, M., Gopi, R., Somasundaram, R., Panneerselvam, R., 2007a. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regul., 53(1):7–16. [doi:10.1007/s10725-007-9198-7]CrossRefGoogle Scholar
  2. Abdul Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Sankari, S., Panneerselvam, R., 2007b. Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem., 42(11):1566–1570. [doi:10.1016/j.procbio.2007.08.006]CrossRefGoogle Scholar
  3. Abdullah, Z., Ahmad, R., 1980. Effect of ABA and GA3 on tuberization and some chemical constituents of potato. Plant Cell Physiol., 21(8):1343–1346.Google Scholar
  4. Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris L. Plant Physiol., 24(1):1–15. [doi:10.1104/pp.24.1.1]PubMedCrossRefGoogle Scholar
  5. Bailey, D.A., Miller, W.B., 1989. Whole plant response of Easter lilies to ancymidol and uniconazole. J. Am. Soc. Hort. Sci., 114(3):393–396.Google Scholar
  6. Berova, M., Zlatev, Z., 2000. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul., 30(2):117–123. [doi:10.1023/A:1006300326975]CrossRefGoogle Scholar
  7. Borzenkova, R.A., Sobyanina, E.A., Pozdeeva, A.A., Yashkov, M.Y., 1998. Effect of phytohormones on starch-synthesizing capacity in growing potato tubers. Russ. J. Plant Physiol., 45(4):472–480.Google Scholar
  8. de Hertogh, A., le Nard, M., 1993. Physiological and Biochemical Aspects of Flower Bulbs. In: de Hertogh, A., le Nard, M. (Eds.), The Physiology of Flower Bulbs. Elsevier Science Publishers B.V., the Netherlands, p.53–69.Google Scholar
  9. Dragićević, I., Konjević, R., Vinterhalter, B., Vinterhalter, D., Nešković, M., 2008. The effects of IAA and tetcyclacis on tuberization in potato (Solanum tuberosum L.) shoot cultures in vitro. Plant Growth Regul., 54(3):189–193. [doi:10.1007/s10725-007-9243-6]CrossRefGoogle Scholar
  10. Grossmann, K., 1990. Plant growth retardants as tools in physiological research. Physiol. Plant., 78(4):640–648. [doi:10.1111/j.1399-3054.1990.tb05254.x]CrossRefGoogle Scholar
  11. Hao, J.J., Yang, W.J., Han, H.F., 2001. Experimental Technology in Plant Physiology. Scientific Technology Publishing House of Liaoning Province, Shenyang, China, p.125–129 (in Chinese).Google Scholar
  12. Hussain, I., Chaudhry, Z., Muhammad, A., 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. Bot., 38(2):275–282.Google Scholar
  13. Jiao, J., Tsujita, M.J., Murr, D.P., 1986. Effects of paclobutrazol and A-Rest on growth, flowering, leaf carbohydrate and leaf senescence in ‘Nellie White’ Easter lily (Lilium longiflorum Thunb.). Sci. Hort., 30(1–2): 135–141. [doi:10.1016/0304-4238(86)90089-0]CrossRefGoogle Scholar
  14. Kim, K.J., Kim, K.S., 2005. Changes of endogenous growth substances during bulb maturation after flowering in Lilium oriental hybrid’ Casa Blanca’. Acta Hort., 570: 661–667.Google Scholar
  15. Kirillova, I.G., Evsyunina, A.S., Puzina, T.I., Korableva, N.P., 2003. Effects of ambiol and 2-chloroethylphosphonic acid on the content of phytohormones in potato leaves and tubers. Appl. Biochem. Microbiol., 39(2):210–214. [doi:10.1023/A:1022554400578]CrossRefGoogle Scholar
  16. Kozak, D., 2006. The effect of growth retardants on induction and development of Glorioa rothschildiana O’Brien tubers in vitro. Acta Hort., 570:345–349.Google Scholar
  17. Mares, D.J., Marschner, H., Krauss, A., 1981. Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum L.). Physiol. Plant., 52(2):267–274. [doi:10.1111/j.1399-3054.1981.tb08504.x]CrossRefGoogle Scholar
  18. McCready, R.M., Guggolz, J., Silveira, V., Owens, H.S., 1950. Determination of starch and amylose in vegetables. Application to peas. Anal. Chem., 22(9):1156–1158. [doi:10.1021/ac60045a016]CrossRefGoogle Scholar
  19. McWha, J.A., 1975. Changes in abscisic acid levels in developing grains of wheat (Triticum aestivum L.). J. Exp. Bot., 26(6):823–827. [doi:10.1093/jxb/26.6.823]CrossRefGoogle Scholar
  20. Menhenett, R., 1984. Comparison of a new triazole retardant paclobutrazol (PP333) with ancymidol, chlorphonium chloride, daminozide and piproctanyl bromide, on stem extension and inflorescence development in Chrysanthemum morifolium Ramat. Sci. Hort., 24(3–4):349–358. [doi:10.1016/0304-4238(84)90120-1]CrossRefGoogle Scholar
  21. Miller, W.B., 1993. Lilium longiflorum. In: de Hertogh, A., le Nard, M. (Eds.), The Physiology of Flower Bulbs. Elsevier Science Publishers B.V., the Netherlands, p.391–422.Google Scholar
  22. Mobli, M., Baninasab, B., 2008. Effects of plant growth regulators on growth and carbohydrate accumulation in shoots and roots of two almond rootstock seedlings. Fruits, 63(6): 363–370. [doi:10.1051/fruits:2008032]CrossRefGoogle Scholar
  23. Nojiri, H., Toyomasu, T., Yamane, H., Shibaoka, H., Murofushi, N., 1993. Qualitative and quantitative analysis of endogenous gibberellins in onion plants and their effects on bulb development. Biosci. Biotechnol. Biochem., 57(12):2031–2035. [doi:10.1271/bbb.57.2031]CrossRefGoogle Scholar
  24. Qian, S.L., Yi, M.F., 2006. Analysis on the changes of endogenous hormones with gladiolus cormels during different growth and development stages. J. Agric. Univ. Hebei, 29(2):9–12.Google Scholar
  25. Quebedeaux, B., Sweetser, P.B., Rowell, J.C., 1976. Abscisic acid levels in soybean reproductive structures during development. Plant Physiol., 58(3):363–366. [doi:10.1104/pp.58.3.363]PubMedCrossRefGoogle Scholar
  26. Saniewski, M., Okubo, H., Miyamoto, K., Ueda, J., 2005. Auxin induces growth of stem excised from growing shoot of cooled tulip bulbs. J. Fac. Agric. Kyushu Univ., 50(2):481–488.Google Scholar
  27. Sharma, N., Kaur, N., Gupta, A.K., 1998a. Effects of gibberellic acid and chlorocholine chloride on tuberization and growth of potato (Solanum tuberosum L.). J. Sci. Food Agric., 78(4):466–470. [doi:10.1002/(SICI)1097-0010 (199812)78:4<466::AID-JSFA140>3.0.CO;2-1]CrossRefGoogle Scholar
  28. Sharma, N., Kaur, N., Gupta, A.K., 1998b. Effect of chlorocholine chloride sprays on the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanum tuberosum L.). Plant Growth Regul., 26(2): 97–103. [doi:10.1023/A:1006087729077]CrossRefGoogle Scholar
  29. Sladky, Z., Bartosova, L., 1990. In vitro induction of axillary potato microtubers and their sprouting after storage. Biol. Plant., 36:15–20.Google Scholar
  30. Tekalign, T., Hammes, P.S., 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regul., 45(1):37–46. [doi:10.1007/s10725-004-6443-1]CrossRefGoogle Scholar
  31. Tezuka, T., Takahara, C., Yamamoto, Y., 1989. Aspects regarding the action of CCC in hollyhock plants. J. Exp. Bot., 40(6):689–692. [doi:10.1093/jxb/40.6.689]CrossRefGoogle Scholar
  32. Tsegaw, T., Hammes, S., Robbertse, J., 2005. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. Hortscience, 40(5):1343–1346.Google Scholar
  33. Vreugdenhil, D., Struik, P.C., 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol. Plant., 75(4):525–531. [doi:10.1111/j.1399-3054.1989.tb05619.x]CrossRefGoogle Scholar
  34. Wang, H.Q., Xiao, L.T., 2009. Effects of chlorocholine chloride on phytohormones and photosynthetic characteristics in potato (Solanum tuberosum L.). J. Plant Growth Regul., 28(1):21–27. [doi:10.1007/s00344-008-9069-0]CrossRefGoogle Scholar
  35. Wang, H.Q., Li, H.S., Liu, F.L., Xiao, L.T., 2009. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Sci. Hort., 119(2):113–116. [doi:10.1016/j.scienta.2008.07.019]CrossRefGoogle Scholar
  36. Xu, X., van Lammeren, A.A.M., Vermeer, E., Vreugdenhil, D., 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol., 117(2):575–584. [doi:10.1104/pp.117.2.575]PubMedCrossRefGoogle Scholar
  37. Yang, J.C., Zhang, J.H., Wang, Z.Q., Xu, G.W., Zhu, Q.S., 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain Filling. Plant Physiol., 135(3):1621–1629. [doi:10.1104/pp.104.041038]PubMedCrossRefGoogle Scholar
  38. Yeshitela, T., Robbertse, P.J., Stassen, P.J.C., 2004. Paclobutrazol suppressed vegetative growth and improved yield as well as fruit quality of ‘Tommy Atkins’ mango (Mangifera indica) in Ethiopia. NZ J. Crop Hort. Sci., 32(3):281–293. [doi:10.1080/01140671.2004.9514307]CrossRefGoogle Scholar
  39. Yim, K.O., Kwon, Y.W., Bayer, D.E., 1997. Growth responses and allocation of assimilates of rice seedlings by paclobutrazol and gibberellin treatment. J. Plant Growth Regul., 16(1):35–41. [doi:10.1007/PL00006972]CrossRefGoogle Scholar
  40. Ziv, M., 1990. The effect of growth retardants on shoot proliferation and morphologenesis in liquid cultured Gladiolus plants. Acta Hort., 280:207–214.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Horticulture, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina

Personalised recommendations