Midazolam in rabbits terminates dysrhythmias caused by intracerebroventricular ropivacaine

  • Yao-min Zhu
  • Zu-yi Yuan
  • Hui Wu
  • Dan-dan Zhou
  • Gui-xia Jing


The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1, 20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephrine. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of γ-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.

Key words

Ropivacaine Cardiotoxicity Ventricular cerebrospinal fluid Central nervous system (CNS) Dysrhythmias Midazolam 

CLC number



  1. Ahmad, R., Beharry, K., Modanlou, H., 2000. Changes in cerebral venous prostanoids during midazolam-induced cerebrovascular hypotension in newborn piglets. Crit. Care Med., 28(7):2429–2436. [doi:10.1097/00003246-200007000-00040]PubMedCrossRefGoogle Scholar
  2. Asl, B.H., Hassanzadeh, K., Khezri, E., Mohammadi, S., 2008. Evaluation the effects of dextromethorphan and midazolam on morphine induced tolerance and dependence in mice. Pak. J. Biol. Sci., 11(13):1690–1695. [doi:10.3923/pjbs.2008.1690.1695]PubMedCrossRefGoogle Scholar
  3. Bilir, A., Yelken, B., Kaygisiz, Z., Senturk, Y., 2006. The effects of dopexamine in bupivacaine and ropivacaine induced cardiotoxicity in isolated rat heart. Saudi. Med. J., 27(8):1194–1198.PubMedGoogle Scholar
  4. Copeland, S.E., Ladd, L.A., Gu, X.Q., Mather, L.E., 2008. The effects of general anesthesia on the central nervous and cardiovascular system toxicity of local anesthetics. Anesth. Analg., 106(5):1429–1439. [doi:10.1213/ane.0b013e31816d12af]PubMedCrossRefGoogle Scholar
  5. Dony, P., Dewinde, V., Vanderick, B., Cuignet, O., Gautier, P., Legrand, E., Lavand’homme, P., de Kock, M., 2000. The comparative toxicity of ropivacaine and bupivacaine at equipotent doses in rats. Anesth. Analg., 91(6): 1489–1492. [doi:10.1097/00000539-200012000-00036]PubMedCrossRefGoogle Scholar
  6. Greenblatt, E.P., Loeb, A.L., Longnecker, D.E., 1992. Endothelium-dependent circulatory control-a mechanism for the differing peripheral vascular effects of isoflurane versus halothane. Anesthesiology, 77(6): 1178–1185. [doi:10.1097/00000542-199212000-00020]PubMedCrossRefGoogle Scholar
  7. Guilhaumou, R., Boulamery, A., Deluca, B., Deturmeny, E., Bruguerolle, B., 2010. Effects of induced hyperthermia on pharmacokinetics of ropivacaine in rats. Fundam. Clin. Pharmacol., 24(4):463–468. [doi:10.1111/j.1472-8206.2009.00803.x]PubMedCrossRefGoogle Scholar
  8. Guinet, P., Estebe, J.P., Ratajczak-Enselme, M., Bansard, J.Y., Chevanne, F., Bec, D., Lecorre, P., Wodey, E., Ecoffey, C., 2009. Electrocardiographic and hemodynamic effects of intravenous infusion of bupivacaine, ropivacaine, levobupivacaine, and lidocaine in anesthetized ewes. Reg. Anesth. Pain Med., 34(1):17–23. [doi:10.1097/AAP.0b013e31819338e2]PubMedCrossRefGoogle Scholar
  9. Igarashi, A., Zadzilka, N., Shirahata, M., 2009. Benzodiazepines and GABA-GABAA receptor system in the cat carotid body. Adv. Exp. Med. Biol., 648(1):169–175. [doi:10.1007/978-90-481-2259-2_19]PubMedCrossRefGoogle Scholar
  10. Isaeva, E.V., 2008. Effects of isoflurane on hippocampal seizures at immature rats in vivo. Fiziol. Zh., 54(5):40–45.PubMedGoogle Scholar
  11. Kanaya, N., Nakayama, M., Kobayashi, I., Fujita, S., Namiki, A., 1998. Effect of isoflurane on epinephrine-induced arrhythmias in ischemic-reperfused dog hearts. Res. Commun. Mol. Pathol. Pharmacol., 100(2):181–186.PubMedGoogle Scholar
  12. Kimura, Y., Kamada, Y., Kimura, A., Orimo, K., 2007. Ropivacaine-induced toxicity with overdose suspected after axillary brachial plexus block. J. Anesth., 21(3): 413–416. [doi:10.1007/s00540-007-0518-x]PubMedCrossRefGoogle Scholar
  13. Kuthiala, G., Chaudhary, G., 2011. Ropivacaine: a review of its pharmacology and clinical use. Indian J. Anaesth., 55(2):104–110. [doi:10.4103/0019-5049.79875]PubMedCrossRefGoogle Scholar
  14. Ladd, L.A., Chang, D.H., Wilson, K.A., Copeland, S.E., Plummer, J.L., Mather, L.E., 2002. Effects of CNS site-directed carotid arterial infusions of bupivacaine, levobupivacaine, and ropivacaine in sheep. Anesthesiology, 97(2):418–428. [doi:10.1097/00000542-200208000-00020]PubMedCrossRefGoogle Scholar
  15. Lin, P.L., Fan, S.Z., Tsai, F.F., Tsai, M.C., Lin, C.H., Huang, C.H., 2007. Neurotoxicity of a novel local anesthetic agent, ropivacaine: the possible roles of bursts of potential and cytoplasmic second messenger. J. Formos. Med. Assoc., 106(10):815–825. [doi:10.1016/S0929-6646(08)60046-7]PubMedCrossRefGoogle Scholar
  16. Mather, L.E., 2010. The acute toxicity of local anesthetics. Expert Opin. Drug Metab. Toxicol., 6(11):1313–1332. [doi:10.1517/17425255.2010.514265]PubMedCrossRefGoogle Scholar
  17. Moore, D.C., 2009. Overextension of regional blocks: when is enough, enough? Reg. Anesth. Pain Med., 34(1):77–78. [doi:10.1097/AAP.0b013e318193406b]PubMedCrossRefGoogle Scholar
  18. Nishiyama, T., Tamai, H., Hanaoka, K., 2003. Serum and cerebrospinal fluid concentrations of midazolam after epidural administration in dogs. Anesth. Analg., 96(1): 159–162. [doi:10.1213/00000539-200301000-00032]PubMedGoogle Scholar
  19. Novellas, R., Ruiz de Gopegui, R., Espada, Y., 2007. Effects of sedation with midazolam and butorphanol on resistive and pulsatility indices in healthy dogs. Vet. Radiol. Ultrasound, 48(3):276–280. [doi:10.1111/j.1740-8261.2007.00242.x]PubMedCrossRefGoogle Scholar
  20. Rodolà, F., Anastasi, F., Vergari, A., 2007. Ropivacaine induced acute neurotoxicity after epidural injection. Eur. Rev. Med. Pharmacol. Sci., 11(2):133–135.PubMedGoogle Scholar
  21. Shen, X., Wang, F., Xu, S., Qian, Y., Liu, Y., Yuan, H., Zhao, Q., Feng, S., Guo, X., Xu, J., Yang, J., 2010. Is cardiolipin the target of local anesthetic cardiotoxicity? Rev. Bras. Anestesiol., 60(4):445–454.PubMedCrossRefGoogle Scholar
  22. Stehr, S.N., Christ, T., Rasche, B., Rasche, S., Wettwer, E., Deussen, A., Ravens, U., Koch, T., Hübler, M., 2007. The effects of levosimendan on myocardial function in ropivacaine toxicity in isolated guinea pig heart preparations. Anesth. Analg., 105(3):641–647. [doi:10.1213/01.ane.0000278146.15671.03]PubMedCrossRefGoogle Scholar
  23. Stewart, J., Kellett, N., Castro, D., 2003. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth. Analg., 97(2): 412–416. [doi:10.1213/01.ANE.0000069506.68137.F2]PubMedCrossRefGoogle Scholar
  24. Tsibiribi, P., Bui-Xuan, C., Bui-Xuan, B., Tabib, A., Descotes, J., Chevalier, P., Gagnieu, M.C., Belkhiria, M., Timour, Q., 2006. The effects of ropivacaine at clinically relevant doses on myocardial ischemia in pigs. J. Anesth., 20(4): 341–343. [doi:10.1007/s00540-006-0429-2]PubMedCrossRefGoogle Scholar
  25. Udelsmann, A., Silva, W.A., Moraes, A.C., Dreyer, E., 2009. Hemodynamic effects of ropivacaine and levobupivacaine intravenous injection in swines. Acta Cir. Bras., 24(4):296–302. [doi:10.1590/S0102-86502009000400009]PubMedCrossRefGoogle Scholar
  26. Velly, A.B., Simon, N., Bedidjian, S., Bruguerolle, B., 2006. Effects of a seven-day continuous infusion of ropivacaine on circadian rhythms in the rat. Chronobiol. Int., 23(3): 683–693. [doi:10.1080/07420520600650570]PubMedCrossRefGoogle Scholar
  27. Wan, Q.X., Bo, Y.L., Li, H.B., Li, W.Z., 2010. Effects of mixture of lidocaine and ropivacaine at different concentrations on the central nervous system and cardiovascular toxicity in rats. Chin. Med. J. (Engl.), 123(1):79–83.Google Scholar
  28. Wiktorowska, A., Owczarek, J., Orszulak-Michalak, D., 1999. The influence of lidocaine and verapamil on haemodynamic parameters after intravenous administration of midazolam in rabbits. Pharmacol. Res., 39(6):421–429. [doi:10.1006/phrs.1998.0464]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yao-min Zhu
    • 1
  • Zu-yi Yuan
    • 2
  • Hui Wu
    • 1
  • Dan-dan Zhou
    • 1
  • Gui-xia Jing
    • 1
  1. 1.Department of Anesthesiology, the First Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Cardiology, the First Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anChina

Personalised recommendations