Advertisement

Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD

  • Bao-bing Yin
  • Shuang-jie Wu
  • Hua-jie Zong
  • Bao-jin Ma
  • Duan Cai
Article

Abstract

This paper aims to screen and identify sphere clone cells with characteristics similar to cancer stem cells in human gallbladder cancer cell line GBC-SD. GBC-SD cells were cultured in a serum-free culture medium with different concentrations of the chemotherapeutic drug cisplatin for generating sphere clones. The mRNA expressions of stem cell-related genes CD133, OCT-4, Nanog, and drug resistance genes ABCG2 and MDR-1 in sphere clones were detected by quantitative real-time polymerase chain reaction (PCR). Stem cell markers were also analyzed by flow cytometry and immunofluorescent staining. Different amounts of sphere clones were injected into nude mice to test their abilities to form tumors. Sphere clones were formed in serum-free culture medium containing cisplatin (30 μmol/L). Flow cytometry results demonstrated that the sphere clones expressed high levels of stem cell markers CD133+ (97.6%) and CD44+ (77.9%) and low levels of CD24+ (2.3%). These clones also overexpressed the drug resistance genes ABCG2 and MDR-1. Quantitative real-time PCR showed that sphere clones expressed stem cell genes Nanog and OCT-4 284 and 266 times, respectively, more than those in the original GBC-SD cells. Immunofluorescent staining showed that sphere clones overexpressed OCT-4, Nanog, and SOX-2, and low expressed MUC1 and vimentin. Tumor formation experiments showed that 1×103 sphere clone cells could induce much larger tumors in nude mice than 1×105 GBC-SD cells. In conclusion, sphere clones of gallbladder cancer with stem cell-like characteristics can be obtained using suspension cultures of GBC-SD cells in serum-free culture medium containing cisplatin.

Key words

Gallbladder cancer Stem cell gene Sphere clone Suspension culture 

CLC number

R73 

References

  1. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F., 2003. Prospective identification of tumorigenic breast cancer cells. PNAS, 100(7):3983–3988. [doi:10.1073/pnas.0530291100]PubMedCrossRefGoogle Scholar
  2. Chen, Y.L., Huang, Z.Q., Zhou, N.X., Zhang, W.Z., Huang, X.Q., Duan, W.D., Liu, R., Liu, Y., 2007. Clinical analysis of 110 patients with primary gallbladder carcinoma. Chin. J. Oncol., 29(9):704–706.Google Scholar
  3. Chumsri, S., Burger, A.M., 2008. Cancer stem cell targeted agents: therapeutic approaches and consequences. Curr. Opin. Mol. Ther., 10(4):323–333.PubMedGoogle Scholar
  4. Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., Wahl, G.M., 2006. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 66(19):9339–9344. [doi:10.1158/0008-5472.CAN-06-3126]PubMedCrossRefGoogle Scholar
  5. de Groen, P.C., Gores, G.J., LaRusso, N.F., Gunderson, L.L., Nagorney, D.M., 1999. Biliary tract cancers. N. Engl. J. Med., 341(18):1368–1378. [doi:10.1056/NEJM199910283411807]PubMedCrossRefGoogle Scholar
  6. Fillmore, C., Kuperwasser, C., 2007. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res., 9(3):303. [doi:10.1186/bcr1673]PubMedCrossRefGoogle Scholar
  7. Gilbert, C.A., Ross, A.H., 2009. Cancer stem cells: cell culture, markers, and targets for new therapies. J. Cell. Biochem., 108(5):1031–1038. [doi:10.1002/jcb.22350]PubMedCrossRefGoogle Scholar
  8. Hadnagy, A., Gaboury, L., Beaulieu, R., Balicki, D., 2006. SP analysis may be used to identify cancer stem cell populations. Exp. Cell Res., 312(19):3701–3710. [doi:10.1016/j.yexcr.2006.08.030]PubMedCrossRefGoogle Scholar
  9. Kobayashi, N., Navarro-Alvarez, N., Soto-Gutierrez, A., Kawamoto, H., Kondo, Y., Yamatsuji, T., Shirakawa, Y., Naomoto, Y., Tanaka, N., 2008. Cancer stem cell research: current situation and problems. Cell Transplant., 17(1–2):19–25.PubMedCrossRefGoogle Scholar
  10. Li, H.Z., Yi, T.B., Wu, Z.Y., 2008. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer, 8(1):135. [doi:10.1186/1471-2407-8-135]PubMedCrossRefGoogle Scholar
  11. Ma, S., Lee, T.K., Zheng, B.J., Chan, K.W., Guan, X.Y., 2008. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27(12):1749–1758. [doi:10.1038/sj.onc.1210811]PubMedCrossRefGoogle Scholar
  12. Moserle, L., Ghisi, M., Amadori, A., Indraccolo, S., 2010. Side population and cancer stem cells: therapeutic implications. Cancer Lett., 288(1):1–9. [doi:10.1016/j.canlet.2009.05.020]PubMedCrossRefGoogle Scholar
  13. Petersen, O.W., Nielsen, H.L., Gudjonsson, T., Villadsen, R., Rank, F., Niebuhr, E., Bissell, M.J., Ronnov-Jessen, L., 2003. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol., 162(2):391–402. [doi:10.1016/S0002-9440(10) 63834-5]PubMedCrossRefGoogle Scholar
  14. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M.A., Daidone, M.G., 2005. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res., 65(13):5506–5511. [doi:10.1158/0008-5472.CAN-05-0626]PubMedCrossRefGoogle Scholar
  15. Puré, E., 2009. The road to integrative cancer therapies: emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opin. Ther. Tar., 13(8):967–973. [doi:10.1517/14728220903103841]CrossRefGoogle Scholar
  16. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., Dirks, P.B., 2004. Identification of human brain tumour initiating cells. Nature, 432(7015):396–401. [doi:10.1038/nature03128]PubMedCrossRefGoogle Scholar
  17. Vander Griend, D.J., Karthaus, W.L., Dalrymple, S., Meeker, A., DeMarzo, A.M., Isaacs, J.T., 2008. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res., 68(23):9703–9711. [doi:10.1158/0008-5472.CAN-08-3084]CrossRefGoogle Scholar
  18. Wang, M., Qin, R.Y., Shen, M., Jiang, J.X., Hu, J., Du, Z.Y., Shi, J.C., 2009. Cancer stem cell marker CD24, CD44, ESA and CD34 expression in biliary tract tumors. Chin. J. Exp. Surg., 26(12):1607–1609.Google Scholar
  19. Yu, S.C., Ping, Y.F., Yi, L., Zhou, Z.H., Chen, J.H., Yao, X.H., Gao, L., Wang, J.M., Bian, X.W., 2008. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett., 265(1):124–134. [doi:10.1016/j.canlet.2008.02.010]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bao-bing Yin
    • 1
  • Shuang-jie Wu
    • 1
  • Hua-jie Zong
    • 1
  • Bao-jin Ma
    • 1
  • Duan Cai
    • 1
  1. 1.Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations