Journal of Zhejiang University SCIENCE B

, Volume 12, Issue 3, pp 219–225 | Cite as

Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita

  • Xiao-ning Yan
  • Richard A. Sikora
  • Jing-wu Zheng


Seed treatment with endophytic fungi has been regarded as an effective method for plant parasitic nematode control. Endophytic fungi from cucumber seedlings were isolated and screened for their potential to be used as seed treatment agents against Meloidogyne incognita. Among the 294 isolates screened, 23 significantly reduced galls formed by M. incognita in greenhouse test. The 10 most effective isolates were Fusarium (5), Trichoderma (1), Chaetomium (1), Acremonium (1), Paecilomyces (1), and Phyllosticta (1). Their control efficacies were repeatedly tested and their colonizations as well as in vitro activity against M. incognita were studied. They reduced the number of galls by 24.0%–58.4% in the first screening and 15.6%–44.3% in the repeated test, respectively. Phyllosticta Ph511 and Chaetomium Ch1001 had high colonizations on both the roots and the aboveground parts of cucumber seedlings. Fusarium isolates had colonization preference on the roots, their root colonizations ranging from 20.1% to 47.3% of the total root area. Trichoderma Tr882, Paecilomyces Pa972, and Acremonium Ac985 had low colonizations on both the roots and the aboveground parts. Acremonium Ac985, Chaetomium Ch1001, Paecilomyces Pa972, and Phyllosticta Ph511 produced compounds affecting motility of the second stage juveniles of M. incognita. Based on these results, Chaetomium Ch1001 was considered to have the highest potential as a seed treatment agent for M. incognita biocontrol.

Key words

Cucumber endophytic fungi Meloidogyne incognita Control efficacy Colonization In vitro activity 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18(6):265–267.Google Scholar
  2. Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Robbins, N., Herre, E.A., 2003. Fungal endophytes limit pathogen damage in a tropical tree. PNAS, 100(26):15649–15654. [doi:10.1073/pnas.2533483100]PubMedCrossRefGoogle Scholar
  3. Athman, S.Y., 2006. Host-Endophyte-Pest Interactions of Endophytic Fusarium oxysporum Antagonistic to Radopholus similis in Banana (Musa spp.). PhD Thesis, University of Pretoria, Pretoria, South Africa, p.25–29.Google Scholar
  4. Bacetty, A.A., Snook, M.E., Glenn, A.E., 2009. Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scriberiri. Phytopathology, 99(12):1336–1345. [doi:10.1094/PHYTO-99-12-1336]PubMedCrossRefGoogle Scholar
  5. Dababat, A.A., Sikora, R.A., 2007a. Induced resistance by the mutualistic endophyte, Fusarium oxysporum 162, toward Meloidogyne incognita on tomato. Biocontrol Sci. Technol., 17(9):969–975. [doi:10.1080/09583150701582057]CrossRefGoogle Scholar
  6. Dababat, A.A., Sikora, R.A., 2007b. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology, 9(6):771–776. [doi:10.1163/156854107782331225]CrossRefGoogle Scholar
  7. Dababat, A.A., Selim, M.E., Saleh, A.A., Sikora, R.A., 2008. Influence of Fusarium wilt resistant tomato cultivars on root colonization of the mutualistic endophyte Fusarium oxysporum strain 162 and its biological control efficacy toward the root-knot nematode Meloidogyne incognita. J. Plant Dis. Prot., 115(6):273–278.Google Scholar
  8. Domsch, K.H., Gams, W., Anderson, T.H., 1980. Compendium of Soil Fungi. Academic Press, London, the United Kingdom, p.1–405.Google Scholar
  9. Fisher, P.J., Graf, F., Petrinil, L.E., Sutton, B.C., Wookey, P.A., 1995. Fungal endophytes of Dryas octopetala from a high polar semidesert and from the Swiss Alps. Mycologia, 87(3):319–323. [doi:10.2307/3760828]CrossRefGoogle Scholar
  10. Gallery, R.A., Dalling, J.W., Arnold, A.E., 2007. Diversity, host affinity and distribution of seed-infecting fungi: a case study with Cecropia. Ecology, 88(3):582–588. [doi: 10.1890/05-1207]PubMedCrossRefGoogle Scholar
  11. Goswamia, J., Pandey, R.K., Tewaria, J.P., Goswami, B.K., 2008. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J. Environ. Sci. Health B, 43(3):237–240. [doi:10.1080/0360123070177 1164]CrossRefGoogle Scholar
  12. Hallmann, J., Sikora, R.A., 1994. Influence of Fusarium oxysporum, a mutualistic fungal endophyte on Meloidogyne incognita infection of tomato. J. Plant Dis. Prot., 101(4):475–481.Google Scholar
  13. Huang, X.L., Xin, M.X., 2008. Experimental Technique in Microbiology. Higher Education Press, Beijing, p.55–79 (in Chinese).Google Scholar
  14. Hussey, R.S., Barker, K.R., 1973. A comparison of methods of collecting inocula Meloidogyne spp. including a new technique. Plant Dis. Rep., 57(6):1025–1028.Google Scholar
  15. Kalele, D.N., Affokpon, A., Coosemans, J., 2007. Efficacy of Paecilomyces lilacinus strain 251 against root knot nematodes in tomato under greenhouse conditions. Commun. Agric. Appl. Biol. Sci., 72(1):209–213.PubMedGoogle Scholar
  16. Kiewnick, S., Sikora, R.A., 2006. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control, 38(2):179–187. [doi:10.1016/j.biocontrol.2005.12.006]CrossRefGoogle Scholar
  17. Le, T.H., Padgham, L.J., Sikora, R.A., 2009. Biological control of the rice root-knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int. J. Pest Manage., 55(1):31–36. [doi:10.1080/09670870802450235]CrossRefGoogle Scholar
  18. Liao, J., Jiang, H., Sun, L., 2003. Identification of species and race of root-knot nematodes on crops in southern China. J. Huazhong Agric. Univ., 22(6):35–40 (in Chinese).Google Scholar
  19. Meyer, S.L.F., Huettel, R.N., Liu, X.Z., Humber, R.A., Juba, J., Nitao, J.K., 2004. Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenlile motility. Nematology, 6(1):23–32. [doi:10.1163/156854104323072883]CrossRefGoogle Scholar
  20. Mu, L.X., Niu, Y.C., Deng, H., 2010. The endophytic mycobiota in summer growing cucumber in Beijing. Mycosystema, 29(2):214–221 (in Chinese).Google Scholar
  21. Niere, B.I., 2001. Significance of Non-pathogenic Isolates of Fusarium oxysporum Schlecht: Fries for the Biological Control of the Burrowing Nematode Radopholus similis (Cobb) Thorne on Tissue Cultured Banana. PhD Thesis, University of Bonn, Bonn, Germany, p.45–58.Google Scholar
  22. Nitao, J.K., Meyer, S.L.F., Oliver, J.E., Schmidt, W.F., Chitwood, D.J., 2002. Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology, 4(1):55–63. [doi:10.1163/156854102760082203]CrossRefGoogle Scholar
  23. Sánchez Márquez, S., Bills, G.F., Zabalgogeazcoa, I., 2007. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Diversity, 27(3):171–195.Google Scholar
  24. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., Spiegel, Y., 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7):687–693. [doi: 10.1094/PHYTO.2001.91.7.687]PubMedCrossRefGoogle Scholar
  25. Sikora, R.A., Fernández, E., 2005. Nematode Parasites of Vegetables. In: Luc, M., Sikora, R.A., Bridge, J. (Eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CABI, Wallingford, p.319–392. [doi:10. 1079/9780851997278.0319]CrossRefGoogle Scholar
  26. Sikora, R.A., Pocasangre, L., Zum Felde, A., Niere, B., Vu, T.T., Dababat, A.A., 2008. Mutualistic endophytic fungi and in-plant suppressiveness to plant parasitic nematodes. Biol. Control, 46(1):15–23. [doi:10.1016/j.biocontrol.2008. 02.011]CrossRefGoogle Scholar
  27. Stone, J.K., Bacon, C.W., White, J.F., 2000. An Overview of Endophytic Microbes: Endophytism Defined. In: Bacon, C.W., White, J.F.Jr. (Eds.), Microbial Endophytes. Marcel Dekker Inc., New York, p.3–29.Google Scholar
  28. Vu, T.T., Hauschild, R., Sikora, R.A., 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology, 8(6):847–852. [doi:10.1163/156854106779799259]CrossRefGoogle Scholar
  29. Wang, L., Yang, B., Li, C., 2001. Investigation of root-knot nematodes in East China. Forest Res., 14(5):24–28 (in Chinese).Google Scholar
  30. Wei, J., 1979. Fungi Identification Manual Book. Shanghai Science and Technology Press, Shanghai, p.256–461 (in Chinese).Google Scholar
  31. West, C.P., Oosterhuis, D.M., Robbins, R.T., 1988. The effect of Acremonium coenophialum on growth and nematode infestation of tall fescue. Plant Soil, 112(1):3–6. [doi:10. 1007/BF02181745]CrossRefGoogle Scholar
  32. Zabalgogeazcoa, I., 2008. Fungal endophytes and their interaction with plant pathogens. Span. J. Agric. Res., 6(Special Issue):138–146.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiao-ning Yan
    • 1
    • 3
  • Richard A. Sikora
    • 2
  • Jing-wu Zheng
    • 1
  1. 1.Institute of Biotechnology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Soil-Ecosystem Phytopathology and Nematology, Institute for Resource Conservation and Plant Science (INRES), Department of Plant HealthUniversity of BonnBonnGermany
  3. 3.Institute of Environment and Plant ProtectionChinese Academy of Tropical Agricultural SciencesDanzhouChina

Personalised recommendations