Journal of Zhejiang University SCIENCE B

, Volume 12, Issue 1, pp 65–71 | Cite as

Fusion expression of pedA gene to obtain biologically active pediocin PA-1 in Escherichia coli

  • Shan-na Liu
  • Ye Han
  • Zhi-jiang Zhou


Two heterologous expression systems using thioredoxin (trxA) as a gene fusion part in Escherichia coli were developed to produce recombinant pediocin PA-1. Pediocin PA-1 structural gene pedA was isolated from Pediococcus acidilactici PA003 by the method of polymerase chain reaction (PCR), then cloned into vector pET32a(+), and expressed as thioredoxin-PedA fusion protein in the host strain E. coli BL21 (DE3). The fusion protein was in the form of inclusion body and was refolded before purification by nickel-iminodiacetic acid (Ni-IDA) agarose resin column. Biological activity of recombinant pediocin PA-1 was analyzed after cleavage of the fusion protein by enterokinase. Agar diffusion test revealed that 512-arbitrary unit (AU) recombinant pediocin PA-1 was obtained from 1 ml culture medium of E. coli (pPA003PED1) using Listeria monocytogenes as the indicator strain. Thioredoxin-PedA fusion gene was further cloned into pET20b(+). Thioredoxin-PedA fusion protein was detected in both the periplasmic and cytoplasmic spaces. The recombinant pediocin PA-1 from the soluble fraction attained 384 AU from 1 ml culture medium of E. coli (pPA003PED2). Therefore, biologically active pediocin PA-1 could be obtained by these two hybrid gene expression methods.

Key words

Bacteriocin Fusion expression Inclusion body Pediocin PA-1 Thioredoxin 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, C., 2003. Novel approach to obtain biologically active recombinant heterodimeric proteins in Escherichia coli. J. Chromatogr. B, 786(1–2):93–107. [doi:10.1016/S1570-0232(02)00720-1]CrossRefGoogle Scholar
  2. Beaulieu, L., Tolkatchev, D., Jetté, J.F., Groleau, D., Subirade, M., 2007. Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Can. J. Microbiol., 53(11):1246–1258. [doi:10.1139/W07-089]PubMedCrossRefGoogle Scholar
  3. Choi, J.H., Lee, S.Y., 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol., 64(5):625–635. [doi:10.1007/s00253-004-1559-9]PubMedCrossRefGoogle Scholar
  4. Fu, X.Y., Tong, W.Y., Wei, D.Z., 2005. Extracellular production of human parathyroid hormone as a thioredoxin fusion form in Escherichia coli by chemical permeabilization combined with heat treatment. Biotechnol. Prog., 21(5):1429–1435. [doi:10.1021/bp050137z]PubMedCrossRefGoogle Scholar
  5. Gillor, O., Etzion, A., Riley, M.A., 2008. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol., 81(4):591–606. [doi:10.1007/s00253-008-1726-5]PubMedCrossRefGoogle Scholar
  6. Ingham, A.B., Moore, R.J., 2007. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem., 47(1):1–9. [doi:10.1042/BA20060207]PubMedCrossRefGoogle Scholar
  7. Kheadr, E., Zihler, A., Dabour, N., Lacroix, C., Blay, G.L., Fliss, I., 2010. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J. Appl. Microbiol., 109(1):54–64. [doi:10.1111/j.1365-2672.2009.04644.x]PubMedGoogle Scholar
  8. Lee, J.H., Kim, J.H., Hwang, S.W., Lee, W.J., Yoon, H.K., Lee, H.S., Hong, S.S., 2000. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun., 277(3):575–580. [doi:10.1006/bbrc.2000.3712]PubMedCrossRefGoogle Scholar
  9. Makrides, S.C., 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev., 60(3):512–538.PubMedGoogle Scholar
  10. Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, p.1–170.Google Scholar
  11. Sommer, B., Friehs, K., Flaschel, E., 2010. Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. J. Biotechnol., 145(4):350–358. [doi:10.1016/j.jbiotec.2009.11.019]PubMedCrossRefGoogle Scholar
  12. Tian, Z.G., Teng, D., Yang, Y.L., Luo, J., Feng, X.J., Fan, Y., Zhang, F., Wang, J.H., 2007. Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli. Appl. Microbiol. Biotechnol., 75(1):117–124. [doi:10.1007/s00253-006-0806-7]PubMedCrossRefGoogle Scholar
  13. Yildirim, S., Konrad, D., Calvez, S., Drider, D., Prevost, H., Lacroix, C., 2007. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Appl. Microbiol. Biotechnol., 77(3):525–531. [doi:10.1007/s00253-007-1188-1]PubMedCrossRefGoogle Scholar
  14. Zhou, Z.J., Han, Y., Han, X., Zheng, F., 2006. Isolation of bacteriocin-producing Pediococcus acidilactici strain from fermented Chinese cabbage. Food Sci., 27(4):89–92 (in Chinese).Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations