Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 9, pp 728–734 | Cite as

Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells

  • Na Wang
  • Cai-ying Jiang
  • Ming-xing Jiang
  • Chuan-xi Zhang
  • Jia-an Cheng
Article

Abstract

The piggyBac transposon has been long used to integrate foreign DNA into insect genomes. However, undesirable transgene expression can result from random insertions into the genome. In this study, the efficiency of chimeric Gal4-piggyBac transposase in directing integration onto a DNA target plasmid was evaluated in cultured silkworm Bombyx mori Bm-12 and fruit fly Drosophila Schneider 2 (S2) cells. The Gal4-piggyBac transposase has a Gal4 DNA-binding domain (DBD), and the target plasmid has upstream activating sequences (UAS) to which the Gal4 DBD can bind with high affinity. The results indicate that, in the Bm-12 and S2 cells, transpositional activity of Gal4-piggyBac transposase was increased by 4.0 and 7.5 times, respectively, compared to controls, where Gal4-UAS interaction was absent. Moreover, the Gal4-piggyBac transposase had the ability of directing piggyBac element integration to certain sites of the target plasmid, although the target-directing specificity was not as high as expected. The chimeric piggyBac transposase has the potential for use in site-directed transgenesis and gene function research in B. mori.

Key words

Bombyx mori piggyBac Gal4-upstream activating sequences (UAS) Transposition assay Transgenesis 

k]CLC number

Q78 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coates, C.J., Kaminski, J.M., Summers, J.B., Segal, D.J., Miller, A.D., Kolb, A.F., 2005. Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol., 23(8):407–419. [doi:10.1016/j.tibtech.2005.06.009]CrossRefPubMedGoogle Scholar
  2. Dai, H., Ma, L., Wang, J., Jiang, R., Wang, Z., Fei, J., 2008. Knockdown of ecdysis-triggering hormone gene with a binary UAS/GAL4 RNA interference system leads to lethal ecdysis deficiency in silkworm. Acta Biochim. Biophys. Sin., 40(9):790–795. [doi:10.1111/j.1745-7270.2008.00460.x]PubMedGoogle Scholar
  3. Demattei, M.V., Thomas, X., Carnus, E., Augé-Gouillou, C., Renault, S., 2010. Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies. Genetica, 138(5):531–540. [doi:10.1007/s10709-009-9390-y]CrossRefPubMedGoogle Scholar
  4. Imamura, M., Nakai, J., Inoue, S., Quan, G.X., Kanda, T., Tamura, T., 2003. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics, 165(3):1329–1340.PubMedGoogle Scholar
  5. Kaminski, J.M., Huber, M.R., Summers, J.B., Ward, M.B., 2002. Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J., 16(10):1242–1247. [doi:10.1096/fj.02-0127hyp]CrossRefPubMedGoogle Scholar
  6. Khurad, A.M., Zhang, M.J., Deshmukh, C.G., Bahekar, R.S., Tiple, A.D., Zhang, C.X., 2009. A new continuous cell line from larval ovaries of silkworm, Bombyx mori. In Vitro Cell. Dev. Biol. Anim., 45(8):414–419. [doi:10.1007/s11626-009-9197-2]CrossRefPubMedGoogle Scholar
  7. Klueg, K.M., Alvarado, D., Muskavitch, M.A.T., Duffy, J.B., 2002. Creation of a GAL4/UAS-coupled inducible gene expression system for use in Drosophila cultured cell lines. Genesis, 34(1–2):119–122. [doi:10.1002/gene.10148]CrossRefPubMedGoogle Scholar
  8. Maragathavally, K.J., Kaminski, J.M., Coates, C.J., 2006. Chimeric Mos1 and piggyBac transposases result in sitedirected integration. FASEB J., 20(11):1880–1882. [doi:10.1096/fj.05-5485fje]CrossRefPubMedGoogle Scholar
  9. Mita, K., Kasahara, M., Sasaki, S., Nagayasu, Y., Yamada, T., Kanamori, H., Namiki, N., Kitagawa, M., Yamashita, H., Yasukochi, Y., et al., 2004. The genome sequence of silkworm, Bombyx mori. DNA Res., 11(1):27–35. [doi:10.1093/dnares/11.1.27]CrossRefPubMedGoogle Scholar
  10. Nakayama, G., Kawaguchi, Y., Koga, K., Kusakabe, T., 2006. Site-specific gene integration in cultured silkworm cells mediated by ϕC31 integrase. Mol. Genet. Genomics, 275(1):1–8. [doi:10.1007/s00438-005-0026-3]CrossRefPubMedGoogle Scholar
  11. Nicholson, L., Singh, G.K., Osterwalder, T., Roman, G.W., Davis, R.L., Keshishian, H., 2008. Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics, 178(1):215–234. [doi:10.1534/genetics.107.081968]CrossRefPubMedGoogle Scholar
  12. Phelps, C.B., Brand, A.H., 1998. Ectopic gene expression in Drosophila using Gal4 system. Methods, 14(4):367–379. [doi:10.1006/meth.1998.0592]CrossRefPubMedGoogle Scholar
  13. Robertson, L.K., Dey, B.K., Campos, A.R., Mahaffey, J.W., 2002. Expression of the Drosophila gene disconnected using the UAS/GAL4 system. Genesis, 34(1–2):103–106. [doi:10.1002/gene.10123]CrossRefPubMedGoogle Scholar
  14. SPSS Inc., 1999. SPSS Base 9.0 Applications Guide. Chicago, Illinois, USA.Google Scholar
  15. Tamura, T., Thilbert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Kômoto, N., Thomas, J.L., Mauchamp, B., Chavancy, G., et al., 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol., 18(1):81–84. [doi:10.1038/71978]CrossRefPubMedGoogle Scholar
  16. The International Silkworm Genome Consortium, 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol., 38(12): 1036–1045. [doi:10.1016/j.ibmb.2008.11.004]CrossRefGoogle Scholar
  17. Thibault, S.T., Luu, H.T., Vann, N., Miller, T.A., 1999. Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Mol. Biol., 8(1):119–123. [doi:10.1046/j.1365-2583.1999.810119.x]CrossRefPubMedGoogle Scholar
  18. Wilson, M.H., Coates, C.J., George, A.L.Jr., 2007. piggyBac transposon-mediated gene transfer in human cells. Mol. Ther., 15(1):139–145. [doi:10.1038/sj.mt.6300028]CrossRefPubMedGoogle Scholar
  19. Wu, S.C.Y., Meir, Y.J.J., Coates, C.J., Handler, A.M., Pelczar, P., Moisyadi, S., Kaminski, J.M., 2006. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2 and Mos1 in mammalian cells. PNAS, 103(41):15008–15013. [doi:10.1073/pnas.0606979103]CrossRefPubMedGoogle Scholar
  20. Wu, S.C.Y., Maragathavally, K.J., Coates, C.J., Kaminski, J.M., 2007. Steps Toward Targeted Insertional Mutagenesis with Class II Transposable Elements. In: Davis, G., Kayser, K.J. (Eds.), Methods in Molecular Biology. Vol. 435: Chromosomal Mutagenesis. Human Press Inc., Totowa, NJ, p.139–151.Google Scholar
  21. Xia, Q.Y., Zhou, Z.Y., Lu, C., Cheng, D.J., Dai, F.Y., Li, B., Zhao, P., Zha, X.F., Cheng, T.C., Chai, C.L., et al., 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306(5703):1937–1940. [doi:10.1126/science.1102210]CrossRefPubMedGoogle Scholar
  22. Xue, G.P., Johnson, J.S., Dalrymple, B.P., 1999. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Meth., 34(3):183–191. [doi:10.1016/S0167-7012(98)00087-6]CrossRefGoogle Scholar
  23. Yamagata, T., Sakurai, T., Uchino, K., Sezutsu, H., Tamura, T., Kanzaki, R., 2008. GFP labeling of neurosecretory cells with the GAL4/UAS system in the silkmoth brain enables selective intracellular staining of neurons. Zool. Sci., 25(5):509–516. [doi:10.2108/zsj.25.509]CrossRefPubMedGoogle Scholar
  24. Zhong, J., Yedvobnick, B., 2009. Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions. Genet. Res., 91(4):243–258. [doi:10.1017/S0016672309990152]CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Na Wang
    • 1
  • Cai-ying Jiang
    • 2
  • Ming-xing Jiang
    • 1
  • Chuan-xi Zhang
    • 1
  • Jia-an Cheng
    • 1
  1. 1.Institute of Insect SciencesZhejiang UniversityHangzhouChina
  2. 2.Institute of BiochemistryZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations