Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 11, pp 851–861 | Cite as

Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity



Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and 1H-nuclear magnetic resonance (1H-NMR). Stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (P n) and P n recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.

Key words

Brassica compestris L. spp. chinensis codA Stress Glycine betaine Net photosynthetic rate (Pn

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alia, Hayashi, H., Sakamoto, A., Murata, N., 1998a. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J., 16(2):155–161. [doi:10.1046/j.1365-313x.1998.00284.x]CrossRefPubMedGoogle Scholar
  2. Alia, Hayashi, H., Chen, T.H.H., Murata, N., 1998b. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2):232–239. [doi:10.1046/j.1365-3040.1998.00264.x]CrossRefGoogle Scholar
  3. Alia, Kondo, Y., Sakamoto, A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen, T.H.H., Murata, N., 1999. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2):279–288. [doi:10.1023/A:1006121821883]CrossRefPubMedGoogle Scholar
  4. Blumwald, E., Grover, A., 2006. Salt Tolerance. In: Halford, N. (Ed.), Plant Biotechnology, Current and Future Applications of Genetically Modified Crops. John Wiley & Sons, Ltd., Chichester, UK, p.206–224. [doi:10.1002/0470021837.ch11]CrossRefGoogle Scholar
  5. Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14(3): 89–97. [doi:10.1016/0167-7799(96)80929-2]CrossRefGoogle Scholar
  6. Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environmental stresses. Plant Cell, 7(7):1099–1111. [doi:10.1105/tpc.7.7.1099]CrossRefPubMedGoogle Scholar
  7. Chen, H.H.T., Murata, N., 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13(9):499–505. [doi:10.1016/j.tplants.2008.06.007]CrossRefPubMedGoogle Scholar
  8. Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J., 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. The Plant Cell, 1(7):715–725. [doi:10.1105/tpc.1.7.715]CrossRefPubMedGoogle Scholar
  9. Gorham, J., 1995. Betaines in Higher Plants-Biosynthesis and Role in Stress Metabolism. In: Wallsgrove, R.M. (Ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, p.171–203.Google Scholar
  10. Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1):133–142. [doi:10.1046/j.1365-313X.1997.12010133.x]CrossRefPubMedGoogle Scholar
  11. Hayashi, H., Alia, Sakamoto, A., Nonaka, H., Chen, T.H.H., Murata, N., 1998. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res., 111(2):357–362. [doi:10.1007/BF02512197]CrossRefGoogle Scholar
  12. He, P.M., Zhang, D.B., Liang, W.Q., Yao, Q.H., Zhang, R.X., 2001. Expression of choline oxidase (codA) enhances salt tolerance of the tobacco. Acta Biochem. Biophys. Sin., 33(5):519–524 (in Chinese).Google Scholar
  13. Holmström, K.O., Somersalo, S., Mandal, A., Palva, T.E., Welin, B., 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot., 51(343):177–185. [doi:10.1093/jexbot/51.343.177]CrossRefPubMedGoogle Scholar
  14. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., Selvaraj, G., 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122(3):747–756. [doi:10.1104/pp.122.3.747]CrossRefPubMedGoogle Scholar
  15. Kramer, H.J., Schmidt, R., Günthe, R.A., Becker, G., Suzuki, Y., Seeger, W., 1995. ELISA technique for quantification of surfactant protein B (SP-B) in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med., 152(5):1540–1544.PubMedGoogle Scholar
  16. Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.G., Peltonen-Sainio, P., 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust. J. Plant Physiol., 25(6):655–663. [doi:10.1071/PP98024]CrossRefGoogle Scholar
  17. Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.K., 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harboring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106(1):51–57.PubMedGoogle Scholar
  18. Mustardy, L., Cunningham, F.X.Jr., Gantt, E., 1990. Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol., 94(1):334–340. [doi:10.1104/pp.94.1.334]CrossRefPubMedGoogle Scholar
  19. Park, E.J., Jeknic, Z., Pino, M.T., Murata, N., Chen, T.H.H., 2007. Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ., 30(8):994–1005. [doi:10.1111/j.1365-3040.2007.01694.x]CrossRefPubMedGoogle Scholar
  20. Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D., 2004. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42(1):57–63. [doi:10.1016/j.plaphy.2003.10.007]CrossRefPubMedGoogle Scholar
  21. Prasad, K.V.S.K., Saradhi, P.P., 2004. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci., 166(5):1197–1212. [doi:10.1016/j.plantsci.2003.12.031]CrossRefGoogle Scholar
  22. Prasad, K.V.S.K., Sharmila, P., Kumar, P.A., Saradhi, P.P., 2000. Transformation of Brassica juncea (L) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed., 6(5):489–499. [doi:10.1023/A:1026542109965]CrossRefGoogle Scholar
  23. Rahman, M.S., Miyake, H., Takeoka, Y., 2002. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci., 5(1):33–44. [doi:10.1626/pps.5.33]CrossRefGoogle Scholar
  24. Rontein, D., Basset, G., Hanson, A.D., 2002. Metabolic engineering of osmoprotectant accumulation in plants. Met. Eng., 4(1):49–56. [doi:10.1006/mben.2001.0208]CrossRefGoogle Scholar
  25. Sakamoto, A., Murata, N., 2000. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot., 51(342):81–88. [doi:10.1093/jexbot/51.342.81]CrossRefPubMedGoogle Scholar
  26. Sakamoto, A., Murata, N., 2001. The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol., 125(1): 180–188. [doi:10.1104/pp.125.1.180]CrossRefPubMedGoogle Scholar
  27. Sakamoto, A., Murata, N., 2002. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ., 25(2):163–171. [doi:10.1046/j.0016-8025.2001.00790.x]CrossRefPubMedGoogle Scholar
  28. Sakamoto, A., Alia, Murata, N., 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 38(6):1011–1019. [doi:10.1023/A:1006095015717]CrossRefPubMedGoogle Scholar
  29. Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J., Rhodes, D., 1995. Salt tolerance of glycinebetaine deficient and containing maize lines. Plant Physiol., 107(2):631–638.PubMedGoogle Scholar
  30. Sawahel, W., 2003. Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biologia Plantarum, 47(1):39–44. [doi:10.1023/A:1027372629612]CrossRefGoogle Scholar
  31. Schobert, B., 1977. Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol., 68(1):17–26. [doi:10.1016/0022-5193(77)90224-7]CrossRefPubMedGoogle Scholar
  32. Xu, W., Sun, M.H., Zhu, Y.F., Su, W.A., 2001. Protective effects of glycibetaine on Brassica chinensis under salt stress. Acta Bot. Sin., 43(8):809–814.Google Scholar
  33. Yang, S.Y., 1999. Determination of Chlorophyll Content. In: Tang, Z.C. (Ed.), Modern Experiment Protocol in Plant Physiology. Science Press, Beijing, China, p.95–96 (in Chinese).Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Agronomy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Shanghai Institute of Plant Physiology and EcologyChinese Academy of ScienceShanghaiChina
  3. 3.School of Resource and Environment ManagementGuizhou College of Finance and EconomicsGuiyangChina

Personalised recommendations