Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 3, pp 151–168 | Cite as

Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi



Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool.

Key words

Biolog Phenotype MicroArray Mitosporic fungi Carbon metabolism Trichoderma Aspergillus Biotechnology 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antal, Z., Kredics, L., Dóczi, I., Manczinger, L., Kevei, F., Nagy, E., 2002. The physiological features of opportunistic Trichoderma strains. Acta Microbiol. Immunol. Hung., 49:393.Google Scholar
  2. Arnone, M.I., Dmochowski, I.J., Gache, C., 2004. Using reporter genes to study cis-regulatory elements. Methods Cell Biol., 74:621–652. [doi:10.1016/S0091-679X(04)74025-X]CrossRefPubMedGoogle Scholar
  3. Arst, H.N.Jr., Cove, D.J., 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet., 126(2):111–141. [doi:10.1007/BF00330988]CrossRefPubMedGoogle Scholar
  4. Arst, H.N.Jr., Scazzocchio, C., 1975. Initiator constitutive mutation with an up-promoter effect in Aspergillus nidulans. Nature, 254(5495):31–34. [doi:10.1038/254031a0]CrossRefPubMedGoogle Scholar
  5. Avalos, J., Geever, R.F., Case, M.E., 1989. Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr. Genet., 16(5–6):369–372. [doi:10.1007/BF00340716]CrossRefPubMedGoogle Scholar
  6. Avery, R.K., 2004. Prophylactic strategies before solid-organ transplantation. Curr. Opin. Infect. Dis., 17(4):353–356. [doi:10.1097/01.qco.0000136936.13662.74]CrossRefPubMedGoogle Scholar
  7. Bailey, C., Arst, H.N.Jr., 1975. Carbon catabolite repression in Aspergillus nidulans. Eur. J. Biochem., 51(2):573–577. [doi:10.1111/j.1432-1033.1975.tb03958.x]CrossRefPubMedGoogle Scholar
  8. Barredo, J.L., Alvarez, E., Cantoral, J.M., Diez, B., Martin, J.F., 1988. Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis. Antimicrob. Agents Chemother., 32(7):1061–1067.PubMedGoogle Scholar
  9. Blayer, S., Woodley, J.M., Dawson, M.J., Lilly, M.D., 1999. Alkaline biocatalysis for the direct synthesis of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). Biotechnol Bioeng., 66(2):131–136. [doi:10.1002/(SICI)1097-0290(1999)66:2〈131::AID-BIT6〉3.0.CO;2-X]CrossRefPubMedGoogle Scholar
  10. Bochner, B.R., 1988. New methods aid microbial identification. Bio/Technology, 6(7):756. [doi:10.1038/nbt0788-756]CrossRefGoogle Scholar
  11. Bochner, B.R., 1989. Sleuthing out bacterial identities. Nature, 339(6220):157–158. [doi:10.1038/339157a0]CrossRefPubMedGoogle Scholar
  12. Bochner, B.R., 2003. New technologies to assess genotype-phenotype relationships. Nature Rev. Genet., 4(4):309–314. [doi:10.1038/nrg1046]CrossRefPubMedGoogle Scholar
  13. Bochner, B.R., Gadzinski, P., Panomitros, E., 2001. Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res., 11(7):1246–1255. [doi:10.1101/gr.186501]CrossRefPubMedGoogle Scholar
  14. Brunner, K., Peterbauer, C.K., Mach, R.L., Lorito, M., Zeilinger, S., Kubicek, C.P., 2003. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr. Genet., 43(4):289–295. [doi:10.1007/s00294-003-0399-y]CrossRefPubMedGoogle Scholar
  15. Brunner, K., Omann, M., Pucher, M.E., Delic, M., Lehner, S., Domnanich, P., Kratochwill, K., Druzhinina, I., Zeilinger, S., 2008. Trichoderma G protein-coupled receptors: genome analysis and functional characterization of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet., 54(6):283–299. [doi:10.1007/s00294-008-0217-7]CrossRefPubMedGoogle Scholar
  16. Caddick, M.X., Peters, D., Platt, A., 1994. Nitrogen regulation in fungi. Antonie Van Leeuwenhoek, 65(3):169–177. [doi:10.1007/BF00871943]CrossRefPubMedGoogle Scholar
  17. Campos-Herrero, M.I., Bordes, A., Perera, A., Ruiz, M.C., Fernandez, A., 1996. Trichoderma koningii peritonitis in a patient undergoing peritoneal dialysis. Clin. Microbiol. Newslett., 18(19):150–151. [doi:10.1016/0196-4399(96)83918-3]CrossRefGoogle Scholar
  18. Carsolio, C., Benhamou, N., Haran, S., Cortes, C., Gutierrez, A., Chet, I., Herrera-Estrella, A., 1999. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl. Environ. Microbiol., 65(3):929–935.PubMedGoogle Scholar
  19. Casas-Flores, S., Rios-Momberg, M., Bibbins, M., Ponce-Noyola, P., Herrera-Estrella, A., 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology, 150(Pt 11):3561–3569. [doi:10.1099/mic.0.27346-0]CrossRefPubMedGoogle Scholar
  20. Chaveroche, M.K., Ghigo, J.M., d’Enfert, C., 2000. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res., 28(22):E97. [doi:10.1093/nar/28.22.e97]CrossRefPubMedGoogle Scholar
  21. dela Cruz, T.E.E., Schulz, B.E., Kubicek, C.P., Druzhinina, I.S., 2006. Carbon source utilization by themarine Dendryphiella species D. arenaria and D. salina. FEMS Microbiol. Ecol., 58(3):343–353. [doi:10.1111/j.1574-6941.2006.00184.x]CrossRefGoogle Scholar
  22. Dogra, N., Breuil, C., 2004. Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae. FEMS Microbiol. Lett., 238(1):175–181. [doi:10.1111/j.1574-6968.2004.tb09753.x]PubMedGoogle Scholar
  23. Donzelli, B.G., Harman, G.E., 2001. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl. Environ. Microbiol., 67(12):5643–5647. [doi:10.1128/AEM.67.12.5643-5647.2001]CrossRefPubMedGoogle Scholar
  24. Dowzer, C.E.A., Kelly, J.M., 1991. Analysis of the creA gene, a regulator of carbon catabolite repression. Mol. Cell. Biol., 11(11):5701–5709.PubMedGoogle Scholar
  25. Druzhinina, I.S., Schmoll, M., Seiboth, B., Kubicek, C.P., 2006. Global carbon utilization profiles of wild-type strains, mutants and transformants of Hypocrea jecorina. Appl. Environ. Microbiol., 72(3):2126–2133. [doi:10.1128/AEM.72.3.2126-2133.2006]CrossRefPubMedGoogle Scholar
  26. Druzhinina, I.S., Komon-Zelazowska, M., Kredics, L., Hatvani, L., Antal, Z., Belayneh, T., Kubicek, C.P., 2008. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology, 154(Pt 11):3447–3459. [doi:10.1099/mic.0.2008/021196-0]CrossRefPubMedGoogle Scholar
  27. d’Enfert, C., Bonini, B.M., Zapella, P.D., Fontaine, T., da Silva, A.M., Terenzi, H.F., 1999. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol. Microbiol., 32(3):471–483. [doi:10.1046/j.1365-2958.1999.01327.x]CrossRefPubMedGoogle Scholar
  28. Farkaš, V., Labudová, I., Bauer, Š., Ferenczy, L., 1981. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiol., 26(2):129–132. [doi:10.1007/BF02927368]CrossRefGoogle Scholar
  29. Felenbok, B., Flipphi, M., Nikolaev, I., 2001. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog. Nucleic Acid Res. Mol. Biol., 69:149–204. [doi:10.1016/S0079-6603(01)69047-0]CrossRefPubMedGoogle Scholar
  30. Fodor, S.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., Adams, C.L., 1993. Multiplexed biochemical assays with biological chips. Nature, 364(6437):555–556. [doi:10.1038/364555a0]CrossRefPubMedGoogle Scholar
  31. Franzusoff, A., Cirillo, V.P., 1982. Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and single-kinase strains of Saccharomyces cerevisiae. Biochim. Biophys. Acta, 688(2):295–304. [doi:10.1016/0005-2736(82)90340-6]CrossRefPubMedGoogle Scholar
  32. Friedl, M.A., Kubicek, C.P., Druzhinina, I.S., 2008a. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol., 74(1):245–250. [doi:10.1128/AEM.02068-07]CrossRefPubMedGoogle Scholar
  33. Friedl, M.A., Schmoll, M., Kubicek, C.P., Druzhinina, I.S., 2008b. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidativestress. Microbiology, 154(Pt 4):1229–1241.CrossRefPubMedGoogle Scholar
  34. Gardiner, D.M., Kazan, K., Manners, J.M., 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol., 46(8):604–613. [doi:10.1016/j.fgb.2009.04.004]CrossRefPubMedGoogle Scholar
  35. Gu, M.B., Mitchell, R.J., Kim, B.C., 2004. Whole-cell-based biosensors for environmental biomonitoring and application. Adv. Biochem. Eng. Biotechnol., 87:269–305.PubMedGoogle Scholar
  36. Guarro, J., Antolin-Ayala, M.I., Gene, J., Gutierrez-Calzada, J., Nieves-Diez, C., Ortoneda, M., 1999. Fatal case of Trichoderma harzianum infection in a renal transplant recipient. J. Clin. Microbiol., 37(11):3751–3755.PubMedGoogle Scholar
  37. Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Darveaux, B.A., Lampe, D.J., Slater, T.M., Ramamurthy, L., DeZwaan, T.M., et al., 2001. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. Sci. USA, 98(9):5110–5115. [doi:10.1073/pnas.091094198]CrossRefPubMedGoogle Scholar
  38. Hennequin, C., Chouaki, T., Pichon, J.C., Strunski, V., Raccurt, C., 2000. Otitis externa due to Trichoderma longibrachiatum. Eur. J. Clin. Microbiol. Infect. Dis., 19(8):641–642. [doi:10.1007/s100960000326]CrossRefPubMedGoogle Scholar
  39. Hoyos-Carvajal, L., Orduz, S., Bissett, J., 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol., 46(9):615–631. [doi:10.1016/j.fgb.2009.04.006]CrossRefPubMedGoogle Scholar
  40. Hynes, M.J., 1975. Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Aust. J. Biol. Sci., 28(3):301–313.PubMedGoogle Scholar
  41. Ilmén, M., Thrane, C., Penttilä, M., 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet., 251(4):451–460. [doi:10.1007/s004380050189]PubMedGoogle Scholar
  42. Jekosch, K., Kück, U., 2000. Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr. Genet., 37(6):388–395. [doi:10.1007/s002940000121]CrossRefPubMedGoogle Scholar
  43. Kahmann, R., Basse, C., 2001. Fungal gene expression during pathogenesis-related development and host plant colonization. Curr. Opin. Microbiol., 4(4):374–380. [doi:10.1016/S1369-5274(00)00220-4]CrossRefPubMedGoogle Scholar
  44. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W., 2001. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology, 11(2):11R–18R. [doi:10.1093/glycob/11.2.11R]CrossRefPubMedGoogle Scholar
  45. Kim, D.J., Baek, J.M., Uribe, P., Kenerley, C.M., Cook, D.R., 2002. Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr. Genet., 40(6):374–384. [doi:10.1007/s00294-001-0267-6]CrossRefPubMedGoogle Scholar
  46. Komon-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M., Kredics, L., Kubicek, C.P., Druzhinina, I.S., 2007. Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl. Environ. Microbiol., 73(22):7415–7426. [doi:10.1128/AEM.01059-07]CrossRefPubMedGoogle Scholar
  47. Kowal, P., Wang, P.G., 2002. UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-L-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides O17. Biochemistry, 41(51):15410–15414. [doi:10.1021/bi026384i]CrossRefPubMedGoogle Scholar
  48. Kraus, G., Druzhinina, I., Bissett, J., Prillinger, H.J., Szakacs, G., Koptchinski, A., Gams, W., Kubicek, C.P., 2004. Trichoderma brevicompactum sp. nov. Mycologia, 96(5):1059–1073. [doi:10.2307/3762089]CrossRefGoogle Scholar
  49. Kubicek, C.P., 1987. Involvement of a conidial endoglucanase and a plasma-membrane bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. J. Gen. Microbiol., 133(6):1481–1487.PubMedGoogle Scholar
  50. Kubicek, C.P., Bissett, J., Kullnig-Gradinger, C.M., Druzhinina, I.S., Szakacs, G., 2003. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet. Biol., 38(3):310–317. [doi:10.1016/S1087-1845(02)00583-2]CrossRefPubMedGoogle Scholar
  51. Kudla, B., Caddick, M.X., Langdon, T., Martinez-Rossi, N.M., Bennett, C.F., Sibley, S., Davies, R.W., Arst, H.N.Jr., 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J., 9(5):1355–1364.PubMedGoogle Scholar
  52. Kutlesa, N.J., Caveney, S., 2001. Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Manage. Sci., 57(1):25–32. [doi:10.1002/1526-4998(200101)57:1〈25::AID-PS272〉3.0.CO;2-I]CrossRefGoogle Scholar
  53. le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J.K., Culley, D.E., Collett, J.R., Martin, J.R., Druzhinina, I.S., Mathis, H., Monot, F., et al., 2009. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. PNAS, 106(38):16151–16156. [doi:10.1073/pnas.0905848106]CrossRefPubMedGoogle Scholar
  54. Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S.L., Zeilinger, S., Kullnig, C.M., Lorito, M., Kubicek, C.P., 1999. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol., 65(5):1858–1863.PubMedGoogle Scholar
  55. March, J.C., Rao, G., Bentley, W.E., 2003. Biotechnological applications of green fluorescent protein. Appl. Microbiol. Biotechnol., 62(4):303–315. [doi:10.1007/s00253-003-1339-y]CrossRefPubMedGoogle Scholar
  56. Marzluf, G.A., 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev., 61(1):17–32.PubMedGoogle Scholar
  57. Montenecourt, B.S., Eveleigh, D.E., 1979. Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei. In: Brown, R.D.Jr., Jurasek, L. (Eds.), Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Advances in Chemistry, Vol. 181. American Chemical Society, p.289–301. [doi:10.1021/ba-1979-0181.ch014]Google Scholar
  58. Nagy, V., Seidl, V., Szakacs, G., Komoń-Zelazowska, M., Kubicek, C.P., Druzhinina, I.S., 2007. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl. Environ. Microbiol., 73(21):7048–7058. [doi:10.1128/AEM.00995-07]CrossRefPubMedGoogle Scholar
  59. Nogawa, M., Goto, M., Okada, H., Morikawa, Y., 2001. L-sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr. Genet., 38(6):329–334. [doi:10.1007/s002940000165]CrossRefPubMedGoogle Scholar
  60. OBrian, G.R., Fakhoury, A.M., Payne, G.A., 2003. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet. Biol., 39(2):118–127. [doi:10.1016/S1087-1845(03)00014-8]CrossRefPubMedGoogle Scholar
  61. O’Farrell, P.H., 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250(10):4007–4021.PubMedGoogle Scholar
  62. Pall, M.L., 1993. The use of ignite (Basta; glufosinate; phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genet. Newslett., 40:58.Google Scholar
  63. Piwnica-Worms, D., Schuster, D.P., Garbow, J.R., 2004. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol., 6(4):319–331. [doi:10.1111/j.1462-5822.2004.00379.x]CrossRefPubMedGoogle Scholar
  64. Platt, A., Langdon, T., Arst, H.N.Jr., Kirk, D., Tollervey, D., Mates Sanchez, J.M., Caddick, M.X., 1996. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3 untranslated region of its mRNA. EMBO J., 15(11):2791–2801.PubMedGoogle Scholar
  65. Ragnaud, J.M., Marceau, C., Roche-Bezian, M.C., Wone, C., 1984. Infection peritoneale a Trichoderma koningii sur dialyse peritoneale continue ambulatoire. Med. Maladies Infect., 14(7–8):402–405. [doi:10.1016/S0399-077X(84)80067-0]CrossRefGoogle Scholar
  66. Randez-Gil, F., Prieto, J.A., Sanz, P., 1995. The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Curr. Genet., 28(2):101–107. [doi:10.1007/BF00315774]CrossRefPubMedGoogle Scholar
  67. Ravagnani, A., Gorfinkiel, L., Langdon, T., Diallinas, G., Adjadj, E., Demais, S., Gorton, D., Arst, H.N.Jr., Scazzocchio, C., 1997. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J., 16(13):3974–3986. [doi:10.1093/emboj/16.13.3974]CrossRefPubMedGoogle Scholar
  68. Rieger, K.J., Kaniak, A., Coppee, J.Y., Aljinovic, G., Baudin-Baillieu, A., Orlowska, G., Gromadka, R., Groudinsky, O., di Rago, J.P., Slonimski, P.P., 1997. Large-scale phenotypic analysis-the pilot project on yeast chromosome III. Yeast, 13(16):1547–1562. [doi:10.1002/(SICI)1097-0061(199712)13:16〈1547::AID-YEA230〉3.3. CO;2-P]CrossRefPubMedGoogle Scholar
  69. Rieger, K.J., El-Alama, M., Stein, G., Bradshaw, C., Slonimski, P.P., Maundrell, K., 1999. Chemotyping of yeast mutants using robotics. Yeast, 15(10B):973–986. [doi:10.1002/(SICI)1097-0061(199907)15:10B〈973::AID-YEA402〉3.0. CO;2-L]CrossRefPubMedGoogle Scholar
  70. Ross-Macdonald, P., Coelho, P.S.R., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K.H., Sheehan, A., Symoniatis, D., Umansky, L., et al., 1999. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 402(6760):413–418. [doi:10.1038/46558]CrossRefPubMedGoogle Scholar
  71. Sampathkumar, P., Paya, C.V., 2001. Fusarium infection after solid-organ transplantation. Clin. Infect. Dis., 32(8):1237–1240. [doi:10.1086/319753]CrossRefPubMedGoogle Scholar
  72. Schauer, R., 2000. Achievements and challenges of sialic acid research. Glycoconj. J., 17(7–9):485–499. [doi:10.1023/A:1011062223612]CrossRefPubMedGoogle Scholar
  73. Schmoll, M., Zeilinger, S., Mach, R.L., Kubicek, C.P., 2004. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet. Biol., 41(9):877–887. [doi:10.1016/j.fgb.2004.06.002]CrossRefPubMedGoogle Scholar
  74. Schuster, A., Kubicek, C.P., Friedl, M.A., Druzhinina, I.S., Schmoll, M., 2007. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics, 8(1):449. [doi:10.1186/1471-2164-8-449]CrossRefPubMedGoogle Scholar
  75. Seiboth, B., Hartl, L., Pail, M., Kubicek, C.P., 2003. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase. Eukaryot. Cell, 2(5):867–875. [doi:10.1128/EC.2.5.867-875.2003]CrossRefPubMedGoogle Scholar
  76. Seiboth, B., Gamauf, C., Pail, M., Hartl, L., Kubicek, C.P., 2007. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol. Microbiol., 66(4):890–900. [doi:10.1111/j.1365-2958.2007.05953.x]CrossRefPubMedGoogle Scholar
  77. Seidl, V., Huemer, B., Seiboth, B., Kubicek, C.P., 2005. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J., 272(22):5923–5939. [doi:10.1111/j.1742-4658.2005.04994.x]CrossRefPubMedGoogle Scholar
  78. Seidl, V., Druzhinina, I.S., Kubicek, C.P., 2006. A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology, 152(Pt 7):2003–2012. [doi:10.1099/mic.0.28897-0]CrossRefPubMedGoogle Scholar
  79. Seidl, V., Gamauf, C., Druzhinina, I.S., Seiboth, B., Hartl, L., Kubicek, C.P., 2008. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 9(1):327. [doi:10.1186/1471-2164-9-327]CrossRefPubMedGoogle Scholar
  80. Sims, A.H., Gent, M.E., Robson, G.D., Dunn-Coleman, N.S., Oliver, S.G., 2004. Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycol. Res., 108(Pt 8):853–857. [doi:10.1017/S095375620400067X]CrossRefPubMedGoogle Scholar
  81. Singh, M.P., 2009. Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi. J. Microbiol. Methods, 77(1):102–108. [doi:10.1016/j.mimet.2009.01.014]CrossRefPubMedGoogle Scholar
  82. Strauss, J., Mach, R.L., Zeilinger, S., Hartler, G., Stöffler, G., Wolschek, M., Kubicek, C.P., 1995. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett., 376(1–2):103–107. [doi:10.1016/0014-5793(95)01255-5]CrossRefPubMedGoogle Scholar
  83. Sweigard, J.A., Carroll, A.M., Valent, B., 1999. Restriction Enzyme-mediated Integration in the Rice Blast Fungus. In: Septoria on Cereals: A Study in Pathosystems. IACR 15th International Symposium. Long Ashton Research Station, Bristol, p.192–198.Google Scholar
  84. Tanis, B.C., van der Pijl, H., van Ogtrop, M.L., Kibbelaar, R.E., Chang, P.C., 1995. Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol. Dial. Transplant., 10(1):114–116.PubMedGoogle Scholar
  85. Tanzer, M.M., Arst, H.N., Skalchunes, A.R., Coffin, M., Darveaux, B.A., Heiniger, R.W., Shuster, J.R., 2003. Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct. Integr. Genomics, 3(4):160–170. [doi:10.1007/s10142-003-0089-3]CrossRefPubMedGoogle Scholar
  86. Vitale, R.G., Afeltra, J., Dannaoui, E., 2005. Antifungal combinations. Methods Mol. Med., 118:143–152.PubMedGoogle Scholar
  87. Wilson, R.A., Arst, H.N.Jr., 1998. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the streetwise GATA family of transcription factors. Microbiol. Mol. Biol. Rev., 62(3):586–596.PubMedGoogle Scholar
  88. Yeo, S.F., Wong, B., 2002. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin. Microbiol. Rev., 15(3):465–484. [doi:10.1128/CMR.15.3.465-484.2002]CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical EngineeringVienna University of TechnologyViennaAustria

Personalised recommendations